sh.sePublications
Change search
Refine search result
1 - 17 of 17
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • harvard-anglia-ruskin-university
  • apa-old-doi-prefix.csl
  • sodertorns-hogskola-harvard.csl
  • sodertorns-hogskola-oxford.csl
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Porseryd, Tove
    et al.
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Larsson, Josefine
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science. Marint centrum, Simrishamn, Sweden.
    Lindman, Johanna
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies.
    Malmström, Erica
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies.
    Smolarz, Katarzyna
    University of Gdańsk, Poland.
    Grahn, Mats
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Dinnétz, Patrik
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Effects on food intake of Gammarus spp. after exposure to PFBA in very low concentrations2024In: Marine Pollution Bulletin, ISSN 0025-326X, E-ISSN 1879-3363, Vol. 202, article id 116369Article in journal (Refereed)
    Abstract [en]

    Per- and polyfluoroalkyl substances (PFAS) are a group of thousands of highly persistent anthropogenic chemicals widely used in many industries. Therefore, they are, ubiquitously present in various types of environments. Despite their omnipresence, ecotoxicological studies of most PFAS are scarce, and those available often assess the effects of long chain PFAS. In this study, we present the results of an exposure experiment in which wild aquatic amphipod Gammarus spp. was exposed to the short chain perfluorinated substance perfluorobutanoic acid (PFBA) at very low and environmentally relevant concentrations of 0, 10 and 100 ng/L. The exposure lasted for 12 days, and food intake and non-reproductive behavior were analyzed. Exposure to 10 and 100 ng/L PFBA resulted in a lower consumption of food during exposure but no effect on behavior was found. 

  • 2.
    Porseryd, Tove
    et al.
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science. The Swedish Society for Nature Conservation, Sweden.
    Volkova Hellström, Kristina
    The Swedish Society for Nature Conservation, Sweden.
    Dinnétz, Patrik
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Pesticide residues in ornamental plants marketed as bee friendly: Levels in flowers, leaves, roots and soil2024In: Environmental Pollution, ISSN 0269-7491, E-ISSN 1873-6424, Vol. 345, article id 123466Article in journal (Refereed)
    Abstract [en]

    Ornamental plants rich in pollen and nectar are often marketed as “pollinator-friendly” by flower retailers. However, even though the plants are attractive from a foraging perspective, i.e pollen and nectar rich, bees and other pollinating insects could be at risk from exposure of pesticide residues on the plants or from pesticide used during production. Pesticides used in ornamental plant production could lead to environmental emissions both during cultivation, at retailer displays and when planted in gardens by the consumers. This study aims to investigate what pesticides that are used in the production of perennial ornamental plants sold in Sweden and if the residues could pose a risk for wild pollinators. We analyze an array of 536 pesticides in whole flowers, leaves, roots and soil of 54 individual (46 had flowers) perennial plants specifically marketed as “bee friendly”. In addition, seeds from 65 seed bags were analyzed for the same pesticides. Our result show for the first time the distribution of pesticide residues between flowers, leaves, roots and soils of ornamental plants. We also show that all ornamental plants analyzed contained at least one pesticide, and that some samples contained up to 19 different substances.

  • 3.
    Moberg, Christina
    et al.
    EASAC; KTH, Sverige.
    Wolrath Söderberg, Maria
    Södertörn University, School of Culture and Education, Rhetoric.
    Sandberg, Linn
    Södertörn University, School of Culture and Education, Gender Studies.
    Lindblad, Inger
    Södertörn University, School of Social Sciences, Social Work.
    Sjöholm, Cecilia
    Södertörn University, School of Culture and Education, Aesthetics.
    Gullström, Martin
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Lalander, Rickard
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Andrén, Elinor
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Vallström, Maria
    Södertörn University, School of Historical and Contemporary Studies, Ethnology.
    Bonow, Madeleine
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Andrén, Thomas
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Porseryd, Tove
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Grahn, Mats
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Karlholm, Dan
    Södertörn University, School of Culture and Education, History and Theory of Art.
    Smith, Nicholas
    Södertörn University, School of Culture and Education, Philosophy.
    Lehtilä, Kari
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Cederberg, Carl
    Södertörn University, School of Culture and Education, Centre for Studies in Practical Knowledge.
    Svärd, Veronica
    Södertörn University, School of Social Sciences, Social Work.
    Gunnarsson Payne, Jenny
    Södertörn University, School of Historical and Contemporary Studies, Ethnology.
    Bornemark, Jonna
    Södertörn University, School of Culture and Education, Centre for Studies in Practical Knowledge.
    Kaun, Anne
    Södertörn University, School of Culture and Education, Media and Communication Studies.
    Bergkvist, Anna-Mia
    Södertörn University, School of Culture and Education, Centre for Studies in Practical Knowledge.
    Gunnarson, Martin
    Södertörn University, School of Culture and Education, Centre for Studies in Practical Knowledge.
    Persson, Sara
    Södertörn University, School of Social Sciences, Business Studies.
    Jacobsson, Ellen
    Södertörn University, School of Culture and Education, Centre for Studies in Practical Knowledge.
    Spånberger Weitz, Ylva
    Södertörn University, School of Social Sciences, Social Work.
    Diderichsen, Öjvind
    Södertörn University, Teacher Education, Teacher Education and Aesthetic Learning Processes.
    Gilek, Michael
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Garrison, Julie
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Pröckl, Maria
    Södertörn University, School of Culture and Education, Centre for Studies in Practical Knowledge.
    Janzén, Therese
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Dobers, Peter
    Södertörn University, School of Social Sciences, Business Studies.
    Dinnétz, Patrik
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Bydler, Charlotte
    Södertörn University, School of Culture and Education, History and Theory of Art.
    Westerberg, Charles
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Elmersjö, Magdalena
    Södertörn University, School of Social Sciences, Social Work.
    Bisander, Thea
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Oreskovic, Nikolina
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Fröhlig, Florence
    Södertörn University, School of Historical and Contemporary Studies, Ethnology.
    Stedt, Kristoffer
    Göteborgs universitet, Sverige.
    De unga gör helt rätt när de stämmer staten: 1 620 forskare och lärare i forskarvärlden: Vi ställer oss bakom Auroras klimatkrav2022In: Aftonbladet, no 2022-12-07, p. 2Article in journal (Other (popular science, discussion, etc.))
    Abstract [sv]

    Vi, 1 620 forskare samt lärare vid universitet och högskolor, är eniga med de unga bakom Auroramålet: De drabbas och riskerar att drabbas allvarligt av klimatkrisen under sin livstid. De klimatåtgärder vi vidtar i närtid avgör deras framtid. Sverige måste ta ansvar och göra sin rättvisa andel av det globala klimatarbetet. 

    I strid med Parisavtalet ökar utsläppen av växthusgaser i en takt som gör att 1,5-gradersmålet kan överskridas om några år. De globala effekterna blir allt mer synliga med ständiga temperaturrekord, smältande isar, havshöjning och extremväder som torka, förödande bränder och skyfall med enorma översvämningar, som i Pakistan nyligen. Försörjningen av befolkningen utsätts för allvarliga hot i många länder.

    Minskningen av den biologiska mångfalden är extrem. Klimatkrisen är enligt WHO det största hotet mot människors hälsa i hela världen och barn utgör en särskilt sårbar grupp. Med Sveriges nordliga läge sker uppvärmningen här dubbelt så fort som det globala genomsnittet. Det förskjuter utbredningsområden för växtlighet och sjukdomsbärande insekter och ökar förekomsten av extremväder såsom värmeböljor, skogsbränder och översvämningar samt av många olika sorters infektioner och allergier. När extremväder ökar, ökar även stressen och risken för mental ohälsa. Värmeböljor ökar risken för sjukdom och död hos sårbara grupper som äldre, små barn och personer med kroniska sjukdomar. De negativa effekterna på hälsan kommer att öka i takt med klimatkrisen och barn riskerar att drabbas av ackumulerade negativa hälsoeffekter under hela sina liv. Redan i dag är mer än hälften av unga mellan 12 och 18 år i Sverige ganska eller mycket oroliga för klimat och miljö. Detta är förståeligt när våra beslutsfattare inte gör vad som krävs.

    Den juridiska och moraliska grunden för arbetet mot klimatförändringarna är att varje land måste göra sin rättvisa andel av det globala klimatarbetet. Centralt i det internationella klimatramverket är att rika länder med höga historiska utsläpp, däribland Sverige, måste gå före resten av världen. Dessa länder måste också bidra till att finansiera klimatomställningen i länderna i det Globala Syd, som är minst ansvariga för klimatkrisen men drabbas hårdast. Denna rättviseprincip är tydlig i Parisavtalet och var en het diskussionsfråga under COP27 i Sharm el-Sheikh, men lyser med sin frånvaro i det svenska klimatarbetet. 

    Sverige har satt mål för att minska sina utsläpp. Men de är helt otillräckliga: minskningstakten är för låg och målen tillåter samtidigt att åtgärder skjuts på framtiden. Dessutom exkluderas merparten av Sveriges utsläpp från de svenska nationella utsläppsmålen; bland annat utelämnas utsläpp som svensk konsumtion orsakar utanför Sveriges gränser, utsläpp från utrikes transporter och utsläpp från markanvändning och skogsbruk, exempelvis utsläpp från förbränning av biobränslen eller utsläpp från dikade våtmarker (Prop. 2016/17:146 s.25-28).

    Sverige saknar dessutom ett eget mål för att öka upptaget av växthusgaser genom utökat skydd och restaurering av ekosystem, något som krävs för att begränsa de värsta konsekvenserna av klimatkrisen (IPCC s.32). Trots dessa låga ambitioner misslyckas Sverige med att nå sina utsläppsmål, konstaterar både Klimatpolitiska rådet och Naturvårdsverket. En klimatpolitik i linje med Parisavtalet kräver både att alla typer av växthusgasutsläpp minskar samtidigt som – inte i stället för – upptaget av växthusgaser maximeras: i dag misslyckas Sverige på bägge fronter.

    Slutsatsen är tydlig. Sverige vidtar inte de åtgärder som krävs för att skydda barns och ungdomars rättigheter enligt Europakonventionen till skydd för de mänskliga rättigheterna. Detta medför allvarliga risker för liv och hälsa för unga generationer, människor i andra länder och särskilt utsatta grupper. Detta kan inte fortsätta. Därför ställer vi oss bakom Auroras krav att Sverige börjar göra sin rättvisa andel och omedelbart sätter igång ett omfattande och långtgående klimatarbete som vilar på vetenskaplig grund och sätter rättvisa i centrum.

  • 4.
    Gerhardt, Karin
    et al.
    Sveriges lantbruksuniversitet, Sverige.
    Wolrath Söderberg, Maria
    Södertörn University, School of Culture and Education, Rhetoric.
    Lindblad, Inger
    Södertörn University, School of Social Sciences, Social Work.
    Diderichsen, Öjvind
    Södertörn University, Teacher Education, Teacher Education and Aesthetic Learning Processes.
    Gullström, Martin
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Dahlin, Maria
    Södertörn University, School of Culture and Education, Rhetoric.
    Köping Olsson, Ann-Sofie
    Södertörn University, School of Social Sciences, Business Studies.
    Lehtilä, Kari
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Rasoal, Chato
    Södertörn University, School of Police Studies.
    Dobers, Peter
    Södertörn University, School of Social Sciences, Business Studies.
    Johansson, Johanna
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Berndt, Kurt D.
    Södertörn University, Teacher Education, Mathematics Education.
    Karlholm, Dan
    Södertörn University, School of Culture and Education, History and Theory of Art.
    Kjellqvist, Tomas
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Lalander, Rickard
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Vallström, Maria
    Södertörn University, School of Historical and Contemporary Studies, Ethnology.
    Alvarsson-Hjort, Jesper
    Södertörn University, School of Social Sciences, Psychology.
    Sjöholm, Cecilia
    Södertörn University, School of Culture and Education, Aesthetics.
    Lönngren, Ann-Sofie
    Södertörn University, School of Culture and Education, Comparative Literature.
    Bydler, Charlotte
    Södertörn University, School of Culture and Education, History and Theory of Art.
    Färjsjö, Eva
    Södertörn University, Teacher Education, Mathematics Education.
    Porseryd, Tove
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Sio, Miriam
    Södertörn University, Teacher Education, Teacher Education and Aesthetic Learning Processes.
    Yazdanpanah, Soheyla
    Södertörn University, School of Culture and Education, Gender Studies.
    Pihl Skoog, Emma
    Södertörn University, School of Historical and Contemporary Studies, Archive Studies.
    Sörbom, Adrienne
    Södertörn University, School of Social Sciences, Sociology.
    Gallardo Fernández, Gloria L.
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Wadstein MacLeod, Katarina
    Södertörn University, School of Culture and Education, History and Theory of Art.
    Garrison, Julie
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Andrén, Elinor
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Svärd, Veronica
    Södertörn University, School of Social Sciences, Social Work.
    Hajighasemi, Ali
    Södertörn University, School of Social Sciences, Social Work.
    Spånberger Weitz, Ylva
    Södertörn University, School of Social Sciences, Social Work.
    Elmersjö, Magdalena
    Södertörn University, School of Social Sciences, Social Work.
    Persson, Sara
    Södertörn University, School of Social Sciences, Business Studies.
    Borevi, Karin
    Södertörn University, School of Social Sciences, Political Science.
    Carlsson, Nina
    Södertörn University, School of Social Sciences, Political Science.
    Löfgren, Isabel
    Södertörn University, School of Culture and Education, Media and Communication Studies.
    Ghose, Sheila
    Södertörn University, School of Culture and Education, English language.
    Bonow, Madeleine
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Bornemark, Jonna
    Södertörn University, School of Culture and Education, Centre for Studies in Practical Knowledge.
    Podolian, Olena
    Södertörn University, School of Social Sciences, Political Science.
    Grahn, Mats
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Gunnarsson Payne, Jenny
    Södertörn University, School of Historical and Contemporary Studies, Ethnology.
    Kaun, Anne
    Södertörn University, School of Culture and Education, Media and Communication Studies.
    Faber, Hugo
    Södertörn University, School of Social Sciences, Political Science.
    Cederberg, Carl
    Södertörn University, School of Culture and Education, Centre for Studies in Practical Knowledge.
    Gradén, Mattias
    Högskolan Dalarna, Sverige.
    Nog nu, politiker – ta klimatkrisen på allvar2022In: Aftonbladet, no 2022-08-25Article in journal (Other (popular science, discussion, etc.))
  • 5.
    Banyoi, Silvia-Maria
    et al.
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies.
    Porseryd, Tove
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Larsson, Josefine
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science. Marint Centrum, Simrishamn, Sweden.
    Grahn, Mats
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Dinnétz, Patrik
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    The effects of exposure to environmentally relevant PFAS concentrations for aquatic organisms at different consumer trophic levels: Systematic review and meta-analyses2022In: Environmental Pollution, ISSN 0269-7491, E-ISSN 1873-6424, Vol. 315, article id 120422Article, review/survey (Refereed)
    Abstract [en]

    Per-and polyfluoroalkyl substances (PFAS) is a collective name for approximately 4700 synthetic chemicals ubiquitous in the aquatic environment worldwide. They are used in a wide array of products and are found in living organisms around the world. Some PFAS have been associated with cancer, developmental toxicity, endocrine disruption, and other health effects. Only a fraction of PFAS are currently monitored and regulated and the presence and effects on aquatic organisms of many PFAS are largely unknown. The aim of this study is to investigate the health effects of environmentally relevant concentrations of PFAS on aquatic organisms at different consumer trophic levels through a systematic review and meta-analysis. The main result shows that PFAS in concentrations up to 13.5 μg/L have adverse effects on body size variables for secondary consumers. However, no significant effects on liver or gonad somatic indices and neither on fecundity were found. In addition, the results show that there are large research gaps for PFAS effects on different organisms in aquatic environments at environmentally relevant concentrations. Most studies have been performed on secondary consumers and there is a substantial lack of studies on other consumers in aquatic ecosystems.

    Download full text (pdf)
    fulltext
  • 6.
    Eggertsen, M.
    et al.
    Stockholm University, Sweden.
    Larsson, Josefine
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Porseryd, Tove
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Åkerlund, C.
    Stockholm University, Sweden.
    Chacin, D. H.
    University of South Florida, USA.
    Berkström, C.
    Stockholm University, Sweden; Swedish University of Agricultural Sciences, Sweden.
    Jiddawi, N.
    Institute of Fisheries Research, Tanzania.
    Kautsky, N.
    Stockholm University, Sweden.
    Halling, C.
    Stockholm University, Sweden.
    Coral-macroalgal interactions: Herbivory and substrate type influence growth of the macroalgae Eucheuma denticulatum (NL Burman) Collins & Hervey, 1917 on a tropical coral reef2021In: Journal of Experimental Marine Biology and Ecology, ISSN 0022-0981, E-ISSN 1879-1697, Vol. 542, article id 151606Article in journal (Refereed)
    Abstract [en]

    Introduced macroalgae becoming invasive may alter ecological functions and habitats in recipient ecosystems. In the Western Indian Ocean (WIO), non-native strains of the native macroalgae Eucheuma denticulatum were introduced for farming practices and consequently spread into the surrounding seascape. We investigated potential effects of non-native and native strains of this macroalgae on a branching coral. We conducted a four-factor field experiment where we examined growth and holdfast development of introduced and native E. denticulatum on live and dead branches of Acropora sp. in the presence and absence of herbivores in Unguja Island, Zanzibar. Moreover, we estimated coral and macroalgae condition by visual examinations, gene expression analyses, and photosynthetic measurements. Macroalgae did not attach to any live coral and coral condition was not impacted by the presence of E. denticulatum, regardless of geographical origin. Instead, necrotic tissue on the macroalgae in areas of direct contact with corals indicated damage inflicted by the coral. The biomass of E. denticulatum did not differ between the replicates attached to live or dead corals in the experiment, yet biomass was strongly influenced by herbivory and replicates without protection from herbivores had a significantly lower biomass. In the absence of herbivory, introduced E. denticulatum had significantly higher growth rates than native algae based on wet weight measurements. These results contribute to an increased understanding of environmental effects by the farming of a non-native strain of algae on corals and stresses the importance to maintain viable populations of macroalgal feeding fishes in such areas.

    Download full text (pdf)
    fulltext
  • 7.
    Porseryd, Tove
    et al.
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Larsson, Josefine
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Kellner, Martin
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Bollner, Tomas
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Mathematics Teaching.
    Dinnétz, Patrik
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Porsch Hällström, Inger
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Altered non-reproductive behavior and feminization caused by developmental exposure to 17α-ethinylestradiol persist to adulthood in three-spined stickleback (Gasterosteus aculeatus)2019In: Aquatic Toxicology, ISSN 0166-445X, E-ISSN 1879-1514, Vol. 207, p. 142-152Article in journal (Refereed)
    Abstract [en]

    The synthetic estrogen 17α-ethinylestradiol (EE2), ubiquitous in the aquatic environment and commonly detected in sewage effluents, interferes with the endocrine system in multiple ways. Exposure during sensitive windows of development causes persistent effects on fertility, reproductive and non-reproductive behavior in mammals and fish. In the present study, three-spined stickleback (Gasterosteus aculeatus) were exposed to nominal 0 and 20 ng/L EE2 from fertilization to 7 weeks post-hatch. After 8 months of remediation in clean water three non-reproductive behaviors, not previously analyzed in developmentally EE2-exposed progeny of wild-caught fish, were evaluated. Chemical analysis revealed that the nominal 0 and 20 ng/L exposure contained 5 and 30 ng/L EE2, respectively. Therefore, the use of control fish from previous experiments was necessary for comparisons. Fish exposed during development showed significant concentration-dependent reduction in anxiety-like behavior in the scototaxis (light/dark preference) test by means of shorter latency to first entrance to the white compartment, more visits in white, and longer total time in white compared to unexposed fish. In the novel tank test, developmental exposure significantly increased the number of transitions to the upper half of the aquaria. Exposure to EE2 during development did not alter shoal cohesion in the shoaling test compared with unexposed fish but fish exposed to 30 ng/L EE2 had significantly longer latency to leave the shoal and fewer transitions away from the shoal compared to fish exposed to 5 ng/L EE2. Skewed sex ratio with more females, sex reversal in genetic males as well as intersex in males was observed after exposure to 30, but not 5 ng/L EE2. In conclusion, EE2 exposure during development in three-spined stickleback resulted in persistent effects on anxiety-like behaviors. These long-term effects from developmental exposure are likely to be of higher relevance for natural populations than are short-term effects from adult exposure.

  • 8.
    Kellner, Martin
    et al.
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Porseryd, Tove
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Porsch Hällström, Inger
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Borg, Bertil
    Stockholm university.
    Roufidou, Chrysoula
    Stockholm university.
    Olsén, K. Håkan
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Developmental exposure to the SSRI citalopram causes long-lasting behavioural effects in the three-spined stickleback (Gasterosteus aculeatus)2018In: Ecotoxicology, ISSN 0963-9292, E-ISSN 1573-3017, Vol. 27, no 1, p. 12-22Article in journal (Refereed)
    Abstract [en]

    Selective Serotonin Re-uptake Inhibitors (SSRIs) are a class of psychotropic drugs used to treat depression in both adolescents and pregnant or breast-feeding mothers as well as in the general population. Recent research on rodents points to persistent behavioural effects of pre- and perinatal exposure to SSRI which last into adulthood. To study effects of developmental exposure in fish, three-spine sticklebacks were exposed to 1.5 µg/l of the SSRI citalopram in the ambient water for 30 days, starting two days post-fertilisation. After 100 days of remediation in clean water the fish were put through an extensive test battery. Feeding behaviour was tested as the number of bites against a piece of food and found to be increased in the exposed fish. Aggression levels were measured as the number of bites against a mirror image during 10 minutes and was also found to be significantly increased in the exposed fish. Novel tank behaviour and locomotor activity was tested in an aquarium that had a horizontal line drawn half-way between the bottom and the surface. Neither the latency to the first transition to the upper half, nor the number of transitions or the total time spent in the upper half was affected by treatment. Locomotor activity was significantly reduced in the exposed fish. The light/dark preference was tested in an aquarium where the bottom and walls were black on one side and white on the other. The number of transitions to the white side was significantly reduced in the exposed fish but there was no effect on the latency to the first transition or the total time spent in the white half. The results in the current study indicate that developmental SSRI exposure causes persistent behavioural effects in fish and contribute to the existing knowledge about SSRIs as environmental pollutants.

    Download full text (pdf)
    fulltext
  • 9.
    Porseryd, Tove
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Endocrine disruption in fish: Effects of 17α-ethinylestradiol exposure on non-reproductive behavior, fertility and brain and testis transcriptome2018Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Aquatic environments are the end recipient for most anthropogenic chemical pollutants. One common chemical pollutant found in the aquatic environment is 17α-ethinylestradiol (EE2), a synthetic estrogen used in contraceptive pills. EE2 is found in sewage treatment plant effluents and surface waters in concentrations from non-detectable up to 300 ng/L. EE2 has the ability to bioaccumulate and is more than 10 fold more potent in fish than the natural counterpart estradiol. Exposure has led to skewed sex ratios, decreased egg and sperm production, and altered reproductive behavior.  The aim of this thesis was to investigate the effects of EE2 exposure on non-reproductive behavior and fertility in fish. We found that zebra fish exposed to low concentrations of EE2 during development showed increased anxiety-like behavior and decreased fertility that were persistent in adulthood, even after a long remediation period in clean water. The altered behavior and lowered fertility were accompanied by alterations in the testis and brain transcriptome of possible significance for the behavior and fertility effects. The zebrafish was also used in adult exposures of EE2 and citalopram, alone and in combination to investigate if behavioral effects can be detected at very low concentrations, and if so, if the two compounds would interact and affect the behavioral outcome. Anxiety-like behavior was altered by EE2 and the two compounds in combination affected the outcome of each other. Further, when developmental exposure of progeny to wild caught three spined stickleback was used as a link between laboratory fish and natural fish populations, EE2 was found to decrease the anxiety-like behavior in the adult stickleback as well as cause ovotestis and intersex, feminization and sex reversal of genetic males. In conclusion, fertility and non-reproductive behaviors in the zebrafish and three spined stickleback are sensitive to EE2 exposure and effects from developmental exposures seem to be persistent.  Fertility and behavior are of high ecological significance for fish and alterations due to EE2 exposure might have negative effects on population fitness. The persistent alterations in the transcriptome of the zebrafish testis and brain lead to generation of hypotheses of mechanisms involved in the behavior and reproductive phenotypes caused by developmental exposure to EE2.

    Download full text (pdf)
    Endocrine disruption in fish: Effects of 17α-ethinylestradiol exposure on non-reproductive behavior, fertility and brain and testis transcriptome
    Download (jpg)
    presentationsbild
  • 10.
    Porseryd, Tove
    et al.
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Reyhanian Caspillo, Nasim
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Biology. Örebro universitet.
    Volkova, Kristina
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Biology. Örebro universitet.
    Elabbas, Lubna
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Biology.
    Källman, Thomas
    Uppsala university.
    Dinnétz, Patrik
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Olsson, Per-Erik
    Örebro universitet.
    Porsch Hällström, Inger
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Biology.
    Testis transcriptome alterations in zebrafish (Danio rerio) with reduced fertility due to developmental exposure to 17α-ethinyl estradiol2018In: General and Comparative Endocrinology, ISSN 0016-6480, E-ISSN 1095-6840, Vol. 262, p. 44-58Article in journal (Refereed)
    Abstract [en]

    17α-Ethinylestradiol (EE2) is a ubiquitous aquatic contaminant shown to decrease fish fertility at low concentrations, especially in fish exposed during development. The mechanisms of the decreased fertility are not fully understood. In this study, we perform transcriptome analysis by RNA sequencing of testes from zebrafish with previously reported lowered fertility due to exposure to low concentrations of EE2during development. Fish were exposed to 1.2 and 1.6 ng/L (measured concentration; nominal concentrations 3 and 10 ng/L) of EE2 from fertilization to 80 days of age, followed by 82 days of remediation in clean water. RNA sequencing analysis revealed 249 and 16 genes to be differentially expressed after exposure to 1.2 and 1.6 ng/L, respectively; a larger inter-sample variation was noted in the latter. Expression of 11 genes were altered by both exposures and in the same direction. The coding sequences most affected could be categorized to the putative functions cell signalling, proteolysis, protein metabolic transport and lipid metabolic process. Several homeobox transcription factors involved in development and differentiation showed increased expression in response to EE2 and differential expression of genes related to cell death, differentiation and proliferation was observed. In addition, several genes related to steroid synthesis, testis development and function were differentially expressed. A number of genes associated with spermatogenesis in zebrafish and/or mouse were also found to be differentially expressed. Further, differences in non-coding sequences were observed, among them several differentially expressed miRNA that might contribute to testis gene regulation at post-transcriptional level. This study has generated insights of changes in gene expression that accompany fertility alterations in zebrafish males that persist after developmental exposure to environmental relevant concentrations of EE2 that persist followed by clean water to adulthood. Hopefully, this will generate hypotheses to test in search for mechanistic explanations.

    Download full text (pdf)
    fulltext
  • 11.
    Porseryd, Tove
    et al.
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Kellner, Martin
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Reyhanian, Nasim
    Örebro University.
    Volkova, Kristina
    Örebro University.
    Elabbas, Lubna
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Biology.
    Ullah, Shahid
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies. Karolinska University Hospital Laboratory.
    Olsén, K. Håkan
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Dinnétz, Patrik
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Porsch Hällström, Inger
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Combinatory effects of low concentrations of 17α-etinylestradiol and citalopram on non-reproductive behavior in adult zebrafish (Danio rerio)2017In: Aquatic Toxicology, ISSN 0166-445X, E-ISSN 1879-1514, Vol. 193, p. 9-17Article in journal (Refereed)
    Abstract [en]

    Sewage treatment plant effluents contain a complex mixture of pharmaceuticals, personal care products and industrial chemicals, thus exposing aquatic organisms. Still, the consequences of exposure to combinations of different classes of drugs is largely unknown. In this study, we expose adult zebrafish (Danio rerio) males and females to low, environmentally relevant concentrations of the endocrine disrupting chemical 17α-ethinyl estradiol (EE2) and the selective serotonin re-uptake inhibitor (SSRI) citalopram, alone and in combination, and analyse three non-reproductive behaviours of importance for population fitness.

    Two weeks exposure to 0.1 and 0.5 ng/LEE2 resulted in increased anxiety in males in the scototaxis (light/dark preference) test. Significantly longer latency periods before entering the white zone and fewer visits in the white zone were observed in males exposed to both 0.1 and 0.5 ng/LEE2 compared to unexposed males. No significant effects of citalopram alone (0.1 and 0.5 µg/L) were observed in the scototaxis test. The combined exposures (0.1 ng/L EE2 + 0.1 µg/L citalopram and 0.5 ng/L EE2 + 0.5 µg/L citalopram) resulted in abolishment of the anxiogenic effects of EE2, with significantly shorter latency period (low dose) and more transitions to white (high and low dose) than in fish exposed to EE2 alone. No significant effects of either EE2, citalopramor the combination of the two were observed in females. In the novel tank test, significantly more transitions to the upper half of the tank were observed in males exposed to 0.1 µg/L citalopram alone compared to unexposed males while males exposed to 0.1 ng/lEE2 had significantly shorter latency period to enter the upper half. Exposure to the combination of the two low concentrations did, however, result in a significantly longer latency and fewer transitions to upper half compared to both control, EE2- and citalopram-exposed males. These males also spent significantly less time in the upper half than the fish exposed to 0.1 ng/l EE2 or 0.1 µg/l citalopram alone. No significant effects on novel tank behaviour were observed in females or males exposed to the higher concentrations. In the shoaling test, males exposed to 0.1 µg/L citalopram and females exposed to 0.5 ng/l EE2 made significantly fewer transitions away from peers while males exposed to 0.1 µg/L citalopram + 0.1 ng/l EE2 performed significantly more transitions than the fish exposed to 0.1 µg/L citalopram alone.

    In conclusion, this study shows that very low concentrations ofEE2, at or slightly above the predicted noeffect concentration (NOEC), affects anxiety in zebrafish males. Furthermore, citalopram, in spite of marginal effect of its own at such low levels, counteracts the response to EE2. This study represents an initial effort to understand the effects on water-living organisms of the cocktails of anthropogenic substances contaminating aquatic environments.

  • 12.
    Porseryd, Tove
    et al.
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Volkova, Kristina
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Biology. Örebro universitet.
    Reyhanian Caspillo, Nasim
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Biology. Örebro univesitet.
    Källman, Thomas
    Uppsala universitet.
    Dinnétz, Patrik
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Porsch Hällström, Inger
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Persistent Effects of Developmental Exposure to 17α-Ethinylestradiol on the Zebrafish (Danio rerio) Brain Transcriptome and Behavior2017In: Frontiers in Behavioral Neuroscience, ISSN 1662-5153, E-ISSN 1662-5153, Vol. 11, article id 69Article in journal (Refereed)
    Abstract [en]

    The synthetic estrogen 17α-ethinylestradiol (EE2) is an endocrine disrupting compound of concern due to its persistence and widespread presence in the aquatic environment. Effects of developmental exposure to low concentrations of EE2 in fish on reproduction and behavior not only persisted to adulthood, but have also been observed to be transmitted to several generations of unexposed progeny. To investigate the possible biological mechanisms of the persistent anxiogenic phenotype, we exposed zebrafish embryos for 80 days post fertilization to 0, 3 and 10 ng/L EE2 (measured concentrations 2.14 and 7.34 ng/L). After discontinued exposure, the animals were allowed to recover for 120 days in clean water. Adult males and females were later tested for changes in stress response and shoal cohesion, and whole-brain gene expression was analyzed with RNA sequencing. The results show increased anxiety in the novel tank and scototaxis tests, and increased shoal cohesion in fish exposed during development to EE2. RNA sequencing revealed 34 coding genes differentially expressed in male brains and 62 in female brains as a result of EE2 exposure. Several differences were observed between males and females in differential gene expression, with only one gene, sv2b, coding for a synaptic vesicle protein, that was affected by EE2 in both sexes. Functional analyses showed that in female brains, EE2 had significant effects on pathways connected to the circadian rhythm, cytoskeleton and motor proteins and synaptic proteins. A large number of non-coding sequences including 19 novel miRNAs were also differentially expressed in the female brain. The largest treatment effect in male brains was observed in pathways related to cholesterol biosynthesis and synaptic proteins. Circadian rhythm and cholesterol biosynthesis, previously implicated in anxiety behavior, might represent possible candidate pathways connecting the transcriptome changes to the alterations to behavior. Further the observed alteration in expression of genes involved in synaptogenesis and synaptic function may be important for the developmental modulations resulting in an anxiety phenotype. This study represents an initial survey of the fish brain transcriptome by RNA sequencing after long-term recovery from developmental exposure to an estrogenic compound.

  • 13.
    Kellner, Martin
    et al.
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Porseryd, Tove
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Hallgren, S
    Uppsala University.
    Porsch-Hällström, Inger
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Biology.
    Hansen, S H
    University of Copenhagen, Denmark.
    Olsén, K Håkan
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Biology.
    Waterborne citalopram has anxiolytic effects and increases locomotor activity in the three-spine stickleback (Gasterosteus aculeatus)2016In: Aquatic Toxicology, ISSN 0166-445X, E-ISSN 1879-1514, Vol. 173, p. 19-28Article in journal (Refereed)
    Abstract [en]

    Citalopram is an antidepressant drug, which acts by inhibiting the re-uptake of serotonin from the synaptic cleft into the pre-synaptic nerve ending. It is one of the most common drugs used in treatment of depression, it is highly lipophilic and frequently found in sewage treatment plant effluents and surface waters around the world. Citalopram and other selective serotonin re-uptake inhibitors have, at concentrations that occur in nature, been shown to have behavioural as well as physiological effects on fish and other animals. This study is the result of several different experiments, intended to analyse different aspects of behavioural effects of chronic citalopram exposure in fish. Our model species the three-spine stickleback is common in the entire northern hemisphere and is considered to be a good environmental sentinel species. Female three-spine sticklebacks were exposed to 0, 1.5 and 15μg/l nominal concentrations of citalopram for 21 days and subjected to the novel tank (NT) diving test. In the NT test, the fish exposed to 1.5μg/l, but not the 15μg/l fish made a significantly higher number of transitions to the upper half and stayed there for significantly longer time than the fish exposed to 0μg/l. The 15μg/l group, however, displayed a significantly lower number of freeze bouts and a shorter total freezing time. The test for locomotor activity included in the NT test showed that fish treated with 1.5 and 15μg/l displayed a significantly higher swimming activity than control fish both 5-7 and 15-17min after the start of the experiment. In the next experiment we compared fish exposed to 1.5μg/l and 0.15μg/l to pure water controls with regard to shoaling intensity and found no effect of treatment. In the final experiment the propensity of fish treated with 1.5μg/l to approach an unknown object and aggressive behaviour was investigated using the Novel Object test and a mirror test, respectively. The exposed fish ventured close to the unknown object significantly more often and stayed there for significantly longer time than unexposed fish. The aggression test yielded no statistically significant effects. It is concluded that citalopram changes the behaviour of the three-spine stickleback in a way that is likely to have ecological consequences and that it must not be considered an environmentally safe pharmaceutical.

  • 14.
    Volkova, Kristina
    et al.
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Biology. Örebro University.
    Caspillo, Nasim Reyhanian
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Biology. Örebro University.
    Porseryd, Tove
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Hallgren, Stefan
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Biology.
    Dinnétz, Patrik
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Porsch-Hällström, Inger
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Biology.
    Developmental exposure of zebrafish (Danio rerio) to 17α-Ethinylestradiol affects non-reproductive behavior and fertility as adults, and increases anxiety in unexposed progeny2015In: Hormones and Behavior, ISSN 0018-506X, E-ISSN 1095-6867, Vol. 73, p. 30-38Article in journal (Refereed)
    Abstract [en]

    Exposure to estrogenic endocrine disruptors (EDCs) during of development affects fertility, reproductive and non-reproductive behavior in mammals and fish. These effects can also be transferred to coming generations. In fish, the effects of developmental EDC exposure on non-reproductive behavior is less well studied. Here, we analyze the effects of 17α-Ethinylestradiol (EE2) on anxiety, shoaling behavior and fertility in zebrafish after developmental treatment and remediation in clean water until adulthood. Zebrafish embryos were exposed from day 1 to day 80 post fertilization to actual concentrations of 1.2 and 1.6ng/L EE2. After remediation for 82days non-reproductive behavior and fertilization success were analyzed in both sexes. Males and females from the 1.2ng/L group, as well as control males and females, were bred, and behavior of the untreated F1 offspring was tested as adults. Developmental treatment with 1.2 and 1.6ng/L EE2 significantly increased anxiety in the Novel Tank test and increased shoaling intensity in both sexes. Fertilization success was significantly reduced by EE2 in both sexes when mated with untreated fish of opposite sex. Progeny of fish treated with 1.2ng/L EE2 showed increased anxiety in the Novel tank test and increased light avoidance in the Scototaxis test compared to control offspring. In conclusion, developmental exposure of zebrafish to low doses of EE2 resulted in persistent changes in behavior and fertility. The behavior of unexposed progeny were affected by their parents' exposure, which might suggest transgenerational effects.

  • 15.
    Kellner, Martin
    et al.
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Porseryd, Tove
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Porsch-Hällström, Inger
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Biology.
    Hansen, Steen
    Univ. of Copenhagen.
    Olsén, K. Håkan
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Biology.
    Environmentally relevant concentrations of citalopram partially inhibit feeding in the three-spine stickleback (Gasterosteus aculeatus)2015In: Aquatic Toxicology, ISSN 0166-445X, E-ISSN 1879-1514, Vol. 158, p. 165-170Article in journal (Refereed)
    Abstract [en]

    Selective Serotonin Re-uptake Inhibitors (SSRI) are mood-altering, psychotropic drugs commonly used in the treatment of depression and other psychological illnesses. Many of them are poorly degraded in sewage treatment plants and enter the environment unaltered. In laboratory studies, they have been demonstrated to affect a wide range of behaviours in aquatic organisms. In this study we investigated the effect of a three-week exposure to 0.15 and 1.5 μg/l of the SSRI citalopram dissolved in the ambient water on the feeding behaviour in three-spine stickleback (Gasterosteus aculeatus). Feeding, measured as the number of attacks performed on a piece of frozen bloodworms during a 10-min period, was reduced by 30–40% in fish exposed to both 0.15 and 1.5 μg/l citalopram. The effects of the environmentally relevant concentration 0.15 μg/l on feeding, an important fitness characteristic, suggests that the ecological significance of environmental SSRI exposure may be pronounced.

    Download full text (pdf)
    fulltext
  • 16.
    Volkova, Kristina
    et al.
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Biology. Örebro University.
    Reyhanian Caspillo, Nasim
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Biology. Örebro university.
    Porseryd, Tove
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Hallgren, Stefan
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies. Uppsala university.
    Dinnetz, Patrik
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Olsén, Håkan
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Biology.
    Porsch Hällström, Inger
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Biology.
    Transgenerational effects of 17α-Ethinyl Estradiol on anxiety behavior in the guppy, Poecilia reticulata2015In: General and Comparative Endocrinology, ISSN 0016-6480, E-ISSN 1095-6840, Vol. 223, p. 66-72Article in journal (Refereed)
  • 17.
    Porseryd, Tove
    et al.
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Volkova, Kristina
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Biology. Örebro University.
    Reyhanian Caspillo, Nasim
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Biology. Örebro university.
    Källman, Thomas
    Uppsala university.
    Porsch-Hällström, Inger
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Biology.
    Persistent effects of developmental exposure to 17α-ethinylestradiol on the zebrafish (Danio rerio) brain transcriptome and stress behaviorManuscript (preprint) (Other academic)
1 - 17 of 17
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • harvard-anglia-ruskin-university
  • apa-old-doi-prefix.csl
  • sodertorns-hogskola-harvard.csl
  • sodertorns-hogskola-oxford.csl
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf