The effects of the strobilurin fungicide azoxystrobin were studied in rackish water microcosms, with natural plankton communities and ediment. Two experiments were conducted: Experiment 1 (nominal conc. 0, 5 and 60 mu g/L, 24-L outdoor microcosms for 21 days) and a second, ollow-up, Experiment 2 (nominal conc. 0, 3, 7.5, 15 mu g/L, 4-L indoor icrocosms for 12 days). The microcosms represent a simplified brackish ater community found in shallow semi-enclosed coastal areas in gricultural districts in the Baltic Sea region. Measured water oncentrations of the fungicide (Experiment 1) were, on average, 83 and 2% of nominal concentrations directly after application, and 25 and 30% fter 21 days, for the low and high dose treatments, respectively, orresponding to mean DT50-values of 15.1 and 25.8 days, for low and igh dose treatments, respectively. In Experiment 1, direct toxic ffects on calanoid copepods at both test concentrations were observed. imilarly, in Experiment 2, the copepod abundance was significantly educed at all tested concentrations. There were also significant econdary effects on zooplankton and phytoplankton community structure, tanding stocks and primary production. Very few ecotoxicological tudies have investigated effects of plant protection products on Baltic rganisms in general and effects on community structure and function pecifically. Our results show that azoxystrobin is toxic to brackish ater copepods at considerably lower concentrations than previously eported from single species tests on freshwater crustaceans, and that irect toxic effects on this ecologically important group may lead to ascade effects altering lower food webs and ecosystem functioning.
Selective Serotonin Re-uptake Inhibitors (SSRIs) are a class of psychotropic drugs used to treat depression in both adolescents and pregnant or breast-feeding mothers as well as in the general population. Recent research on rodents points to persistent behavioural effects of pre- and perinatal exposure to SSRI which last into adulthood. To study effects of developmental exposure in fish, three-spine sticklebacks were exposed to 1.5 µg/l of the SSRI citalopram in the ambient water for 30 days, starting two days post-fertilisation. After 100 days of remediation in clean water the fish were put through an extensive test battery. Feeding behaviour was tested as the number of bites against a piece of food and found to be increased in the exposed fish. Aggression levels were measured as the number of bites against a mirror image during 10 minutes and was also found to be significantly increased in the exposed fish. Novel tank behaviour and locomotor activity was tested in an aquarium that had a horizontal line drawn half-way between the bottom and the surface. Neither the latency to the first transition to the upper half, nor the number of transitions or the total time spent in the upper half was affected by treatment. Locomotor activity was significantly reduced in the exposed fish. The light/dark preference was tested in an aquarium where the bottom and walls were black on one side and white on the other. The number of transitions to the white side was significantly reduced in the exposed fish but there was no effect on the latency to the first transition or the total time spent in the white half. The results in the current study indicate that developmental SSRI exposure causes persistent behavioural effects in fish and contribute to the existing knowledge about SSRIs as environmental pollutants.
Contamination can cause a rapid environmental change which may require populations to respond with evolutionary changes. To evaluate the effects of pulp mill effluents on population genetics, we sampled three-spined sticklebacks (Gasterosteus aculeatus) near four pulp mills and four adjacent reference sites and analyzed Amplified Fragment Length Polymorphism (AFLP) to compare genetic variability. A fine scale genetic structure was detected and samples from polluted sites separated from reference sites in multidimensional scaling plots (P < 0.005, 1000 permutations) and locus-by-locus Analysis of Molecular Variance (AMOVA) further confirmed that habitats are significantly separated (F(ST) = 0.021, P < 0.01, 1023 permutations). The amount of genetic variation between populations did not differ between habitats, and populations from both habitats had similar levels of heterozygosity (polluted sites Nei's Hs = 0.11, reference sites Nei's Hs = 0.11). Still, pairwise F(ST): s between three, out of four, pairs of polluted-reference sites were significant. A F(ST)-outlier analysis showed that 21 (8.4%) loci were statistically different from a neutral distribution at the P < 0.05 level and therefore indicated to be under divergent selection. When removing 13 F(ST)-outlier loci, significant at the P < 0.01 level, differentiation between habitats disappeared in a multidimensional scaling plot. In conclusion, pulp mill effluence has acted as a selective agent on natural populations of G. aculeatus, causing a convergence in genotype composition change at multiple sites in an open environment.
Selective serotonin re-uptake inhibitors are pharmaceuticals used to treat a range of psychological disorders. They are frequently found in surface waters in populated areas. In recent years, they have been shown to affect the behaviour of various aquatic organisms in a way that can have ecological effects. In this study, we exposed zebrafish of both sexes to nominally 0.00, 0.15 and 1.50 µg L−1 Escitalopram in flow-through tanks for three weeks. Subsequently, ten swimming behaviour parameters were quantified using high-resolution video tracking. There were noticeable gender differences in the behaviour responses to Escitalopram. Female fish exposed to 1.50 µg L−1 Escitalopram had a lower maximum swimming velocity, stopped less often and exhibited increased boldness (reduced thigmotaxis) compared to controls. Male fish exposed to 1.50 µg L−1 had a lower maximum swimming velocity compared to control fish. At the end of exposures, both length and weight of the females exposed to 1.50 µg L−1 Escitalopram were significantly less than the group of control fish. In addition, males exposed to 1.50 µg L−1 Escitalopram were significantly shorter than control fish. The behaviour, weight and body length of the fish exposed to nominally 0.15 µg L−1 was not significantly different from control fish in either sex. The results of this study demonstrate that Escitalopram can affect subtle but ecologically important aspects of fish behaviour and lends further credibility to the assumption that Escitalopram is an environmentally active pharmaceutical.