sh.sePublications
Change search
Link to record
Permanent link

Direct link
Publications (10 of 64) Show all publications
Vinogradova, O., Gaillard, M.-J., Andrén, E., Palm, V., Rönnby, J., Dahl, M., . . . Andrén, T. (2024). 3000 Years of past regional and local land-use and land-cover change in the southeastern Swedish coastal area: Early human-induced increases in landscape openness as a potential nutrient source to the Baltic Sea coastal waters. The Holocene, 34(1), 56-73
Open this publication in new window or tab >>3000 Years of past regional and local land-use and land-cover change in the southeastern Swedish coastal area: Early human-induced increases in landscape openness as a potential nutrient source to the Baltic Sea coastal waters
Show others...
2024 (English)In: The Holocene, ISSN 0959-6836, E-ISSN 1477-0911, Vol. 34, no 1, p. 56-73Article in journal (Refereed) Published
Abstract [en]

Reconstructions of past land use and related land-cover changes at local and regional scales are needed to evaluate the potential long-term impacts of land use on the coastal waters of the Baltic Sea. In this purpose, we selected the Gamleby area at the Swedish Baltic Sea coast for a case study. We use a new, high resolution pollen record from a small lake (Lillsjön) located 3.6 km NNW of the bay Gamlebyviken and detailed analysis of the available archeological data to reconstruct local land-use changes over the last 3000 years. To estimate land-cover change at local (2–3 km radius area) and regional (50 km radius area) scales we use four additional, published pollen records from two small and two large lakes (25–70 km S of Lillsjön) and the Landscape Reconstruction Algorithm, a pollen-vegetation modeling scheme. Results show that regional and local (small lakes Lillsjön and Hyttegöl) land-cover changes are comparable over the last 1500 years (Late Iron Age to present), and that landscape openness was much larger locally than regionally (difference of 20–40% cover over the last 500 years). The periods of largest potential impacts on the Gamlebyviken Bay from regional and local land use are 200–950 CE (Late Iron Age) and 1450 CE to present, and of lowest potential impacts 950–1450 CE. The question on whether the large landscape openness 1150–50 BCE and significant afforestation 50 BCE–200 CE reconstructed for Lillsjön’s area are characteristic of the Gamlebyviken region will require additional pollen records in the catchment area. 

Place, publisher, year, edition, pages
Sage Publications, 2024
Keywords
Archeological data, Gamlebyviken, Landscape Reconstruction Algorithm, Late Holocene, pollen analysis, REVEALS and LOVE models
National Category
Environmental Sciences Geology
Research subject
Baltic and East European studies
Identifiers
urn:nbn:se:sh:diva-52570 (URN)10.1177/09596836231200433 (DOI)001084189400001 ()2-s2.0-85174272828 (Scopus ID)
Funder
The Foundation for Baltic and East European Studies, 21-PD2-0002The Foundation for Baltic and East European Studies, 55/2017
Available from: 2023-10-26 Created: 2023-10-26 Last updated: 2024-01-12Bibliographically approved
Dahl, M., Gullström, M., Bernabeu, I., Serrano, O., Leiva-Dueñas, C., Linderholm, H. W., . . . Mateo, M. A. (2024). A 2,000-Year Record of Eelgrass (Zostera marina L.): Colonization Shows Substantial Gains in Blue Carbon Storage and Nutrient Retention. Global Biogeochemical Cycles, 38(3), Article ID e2023GB008039.
Open this publication in new window or tab >>A 2,000-Year Record of Eelgrass (Zostera marina L.): Colonization Shows Substantial Gains in Blue Carbon Storage and Nutrient Retention
Show others...
2024 (English)In: Global Biogeochemical Cycles, ISSN 0886-6236, E-ISSN 1944-9224, Vol. 38, no 3, article id e2023GB008039Article in journal (Refereed) Published
Abstract [en]

Assessing historical environmental conditions linked to habitat colonization is important for understanding long-term resilience and improving conservation and restoration efforts. Such information is lacking for the seagrass Zostera marina, an important foundation species across cold-temperate coastal areas of the Northern Hemisphere. Here, we reconstructed environmental conditions during the last 14,000 years from sediment cores in two eelgrass (Z. marina) meadows along the Swedish west coast, with the main aims to identify the time frame of seagrass colonization and describe subsequent biogeochemical changes following establishment. Based on vegetation proxies (lipid biomarkers), eelgrass colonization occurred about 2,000 years ago after geomorphological changes that resulted in a shallow, sheltered environment favoring seagrass growth. Seagrass establishment led to up to 20- and 24-fold increases in sedimentary carbon and nitrogen accumulation rates, respectively. This demonstrates the capacity of seagrasses as efficient ecosystem engineers and their role in global change mitigation and adaptation through CO2 removal, and nutrient and sediment retention. By combining regional climate projections and landscape models, we assessed potential climate change effects on seagrass growth, productivity and distribution until 2100. These predictions showed that seagrass meadows are mostly at risk from increased sedimentation and hydrodynamic changes, while the impact from sea level rise alone might be of less importance in the studied area. This study showcases the positive feedback between seagrass colonization and environmental conditions, which holds promise for successful conservation and restoration efforts aimed at supporting climate change mitigation and adaptation, and the provision of several other crucial ecosystem services. © 2024. The Authors.

Place, publisher, year, edition, pages
John Wiley & Sons, 2024
Keywords
climate change, environmental change, millennial scale, nature-based solution, paleoreconstruction, seagrass, environmental conditions, global change, regional climate, sea level change, sedimentation
National Category
Climate Research Ecology
Research subject
Environmental Studies
Identifiers
urn:nbn:se:sh:diva-53746 (URN)10.1029/2023GB008039 (DOI)001181933100001 ()2-s2.0-85187910776 (Scopus ID)
Available from: 2024-03-28 Created: 2024-03-28 Last updated: 2024-04-02Bibliographically approved
Katrantsiotis, C., Dahl, M., Palm, V., Rönnby, J., Andrén, T. & Andrén, E. (2023). Holocene relative sea level changes in the Vastervik-Gamlebyviken region on the southeast coast of Sweden, southern Baltic Sea. Boreas, 52(2), 206-222
Open this publication in new window or tab >>Holocene relative sea level changes in the Vastervik-Gamlebyviken region on the southeast coast of Sweden, southern Baltic Sea
Show others...
2023 (English)In: Boreas, ISSN 0300-9483, E-ISSN 1502-3885, Vol. 52, no 2, p. 206-222Article in journal (Refereed) Published
Abstract [en]

We reconstruct the Holocene shore displacement of the Vastervik-Gamlebyviken area on the southeast coast of Sweden, characterised by a maritime cultural landscape and archaeological significance since the Mesolithic. Sediment cores were retrieved from four lake basins that have been raised above sea level due to the postglacial land uplift and eustatic sea level changes after the melting of the Fennoscandian Ice Sheet. The cores were radiocarbon dated and analysed for loss on ignition and diatoms. The isolation thresholds of the basins were determined using LiDAR data. The results provide evidence for the initiation of the first Littorina Sea transgression in this area at 8.5 thousand calibrated years before present (cal. ka BP). A relative sea level rise by similar to 7 m a.s.l. is recorded between 8.0 and 7.5 cal. ka BP with a highstand at similar to 22 m a.s.l. between 7.5 and 6.2 cal. ka BP. These phases coincide with the second and third Littorina Sea transgressions, respectively, in the Blekinge area, southern Sweden and are consistent with the final deglaciation of North America. After 6.2 cal. ka BP, the relative sea level dropped below 22 m a.s.l., and remained at similar to 20 m a.s.l. until 4.6 cal. ka BP coinciding with the fourth Littorina Sea transgression in Blekinge. From 4.6 to 4.2 cal. ka BP, the shore displacement shows a regression rate of 10 mm a(-1) followed by a slowdown with a mean value of 4.6 mm a(-1) until 1.6 cal. ka BP, when the relative sea level dropped below 3.3 m a.s.l. The Middle to Late Holocene highstand and other periods of minor sea level transgressions and/or higher salinity between 6.2 and 1.7 cal. ka BP are attributed to a combination of warmer climate and higher inflow of saline waters in the southern Baltic Sea due to stronger westerlies, caused by variations in the North Atlantic atmospheric patterns.

Place, publisher, year, edition, pages
John Wiley & Sons, 2023
National Category
Archaeology Earth and Related Environmental Sciences
Research subject
Baltic and East European studies
Identifiers
urn:nbn:se:sh:diva-50107 (URN)10.1111/bor.12605 (DOI)000864284500001 ()2-s2.0-85139201509 (Scopus ID)
Funder
The Foundation for Baltic and East European Studies, 55/2017The Foundation for Baltic and East European Studies, 21-PD2-0002
Available from: 2022-10-21 Created: 2022-10-21 Last updated: 2023-04-13Bibliographically approved
Moberg, C., Wolrath Söderberg, M., Sandberg, L., Lindblad, I., Sjöholm, C., Gullström, M., . . . Stedt, K. (2022). De unga gör helt rätt när de stämmer staten: 1 620 forskare och lärare i forskarvärlden: Vi ställer oss bakom Auroras klimatkrav. Aftonbladet (2022-12-07)
Open this publication in new window or tab >>De unga gör helt rätt när de stämmer staten: 1 620 forskare och lärare i forskarvärlden: Vi ställer oss bakom Auroras klimatkrav
Show others...
2022 (Swedish)In: Aftonbladet, no 2022-12-07, p. 2Article in journal, News item (Other (popular science, discussion, etc.)) Published
Abstract [sv]

Vi, 1 620 forskare samt lärare vid universitet och högskolor, är eniga med de unga bakom Auroramålet: De drabbas och riskerar att drabbas allvarligt av klimatkrisen under sin livstid. De klimatåtgärder vi vidtar i närtid avgör deras framtid. Sverige måste ta ansvar och göra sin rättvisa andel av det globala klimatarbetet. 

I strid med Parisavtalet ökar utsläppen av växthusgaser i en takt som gör att 1,5-gradersmålet kan överskridas om några år. De globala effekterna blir allt mer synliga med ständiga temperaturrekord, smältande isar, havshöjning och extremväder som torka, förödande bränder och skyfall med enorma översvämningar, som i Pakistan nyligen. Försörjningen av befolkningen utsätts för allvarliga hot i många länder.

Minskningen av den biologiska mångfalden är extrem. Klimatkrisen är enligt WHO det största hotet mot människors hälsa i hela världen och barn utgör en särskilt sårbar grupp. Med Sveriges nordliga läge sker uppvärmningen här dubbelt så fort som det globala genomsnittet. Det förskjuter utbredningsområden för växtlighet och sjukdomsbärande insekter och ökar förekomsten av extremväder såsom värmeböljor, skogsbränder och översvämningar samt av många olika sorters infektioner och allergier. När extremväder ökar, ökar även stressen och risken för mental ohälsa. Värmeböljor ökar risken för sjukdom och död hos sårbara grupper som äldre, små barn och personer med kroniska sjukdomar. De negativa effekterna på hälsan kommer att öka i takt med klimatkrisen och barn riskerar att drabbas av ackumulerade negativa hälsoeffekter under hela sina liv. Redan i dag är mer än hälften av unga mellan 12 och 18 år i Sverige ganska eller mycket oroliga för klimat och miljö. Detta är förståeligt när våra beslutsfattare inte gör vad som krävs.

Den juridiska och moraliska grunden för arbetet mot klimatförändringarna är att varje land måste göra sin rättvisa andel av det globala klimatarbetet. Centralt i det internationella klimatramverket är att rika länder med höga historiska utsläpp, däribland Sverige, måste gå före resten av världen. Dessa länder måste också bidra till att finansiera klimatomställningen i länderna i det Globala Syd, som är minst ansvariga för klimatkrisen men drabbas hårdast. Denna rättviseprincip är tydlig i Parisavtalet och var en het diskussionsfråga under COP27 i Sharm el-Sheikh, men lyser med sin frånvaro i det svenska klimatarbetet. 

Sverige har satt mål för att minska sina utsläpp. Men de är helt otillräckliga: minskningstakten är för låg och målen tillåter samtidigt att åtgärder skjuts på framtiden. Dessutom exkluderas merparten av Sveriges utsläpp från de svenska nationella utsläppsmålen; bland annat utelämnas utsläpp som svensk konsumtion orsakar utanför Sveriges gränser, utsläpp från utrikes transporter och utsläpp från markanvändning och skogsbruk, exempelvis utsläpp från förbränning av biobränslen eller utsläpp från dikade våtmarker (Prop. 2016/17:146 s.25-28).

Sverige saknar dessutom ett eget mål för att öka upptaget av växthusgaser genom utökat skydd och restaurering av ekosystem, något som krävs för att begränsa de värsta konsekvenserna av klimatkrisen (IPCC s.32). Trots dessa låga ambitioner misslyckas Sverige med att nå sina utsläppsmål, konstaterar både Klimatpolitiska rådet och Naturvårdsverket. En klimatpolitik i linje med Parisavtalet kräver både att alla typer av växthusgasutsläpp minskar samtidigt som – inte i stället för – upptaget av växthusgaser maximeras: i dag misslyckas Sverige på bägge fronter.

Slutsatsen är tydlig. Sverige vidtar inte de åtgärder som krävs för att skydda barns och ungdomars rättigheter enligt Europakonventionen till skydd för de mänskliga rättigheterna. Detta medför allvarliga risker för liv och hälsa för unga generationer, människor i andra länder och särskilt utsatta grupper. Detta kan inte fortsätta. Därför ställer vi oss bakom Auroras krav att Sverige börjar göra sin rättvisa andel och omedelbart sätter igång ett omfattande och långtgående klimatarbete som vilar på vetenskaplig grund och sätter rättvisa i centrum.

Place, publisher, year, edition, pages
Aftonbladet, 2022. p. 2
Keywords
Klimatförändringar; växthusgaser; mänskliga rättigheter
National Category
Law and Society
Identifiers
urn:nbn:se:sh:diva-50340 (URN)
Note

Aftonbladet Debatt

Available from: 2022-12-07 Created: 2022-12-07 Last updated: 2023-10-06Bibliographically approved
Sanyal, A., Larsson, J., van Wirdum, F., Andrén, T., Moros, M., Lönn, M. & Andrén, E. (2022). Not dead yet: Diatom resting spores can survive in nature for several millennia. American Journal of Botany, 67-82
Open this publication in new window or tab >>Not dead yet: Diatom resting spores can survive in nature for several millennia
Show others...
2022 (English)In: American Journal of Botany, ISSN 0002-9122, E-ISSN 1537-2197, p. 67-82Article in journal (Refereed) Published
Abstract [en]

PREMISE: Understanding the adaptive capacities of species over long timescales lies in examining the revived recent and millennia old resting spores buried in sediments. We show for the first time the revival, viability and germination rate of resting spores of the diatom Chaetoceros deposited in sub-seafloor sediments from three ages (recent: 0-80 years; ancient: ~1250 (Medieval Climate Anomaly) and ~6600 (Holocene Thermal Maximum) calendar year before present.

METHODS: Recent and ancient Chaetoceros spores were revived to examine their viability and germination rate. Light and scanning electron microscopy and Sanger sequencing was done to identify the species.

KEY RESULTS: We show that ~6600 cal. year BP old Chaetoceros resting spores are still viable and the vegetative reproduction in recent and ancient resting spores vary. The time taken to germinate is three hours to 2-3 days in both recent and ancient spores, but the germination rate of the spores decreased with increasing age. The germination rate of the recent spores was ~41% while that of the ancient spores were ~31% and ~12% for the ~1250 and ~6600 cal. year BP old resting spores. Based on the morphology of the germinated vegetative cells we identified the species as Chaetoceros muelleri var. subsalsum. Sanger sequences of nuclear and chloroplast markers identified the species as Chaetoceros muelleri.

CONCLUSIONS: We identify a unique model system, Chaetoceros muelleri var. subsalsum and show that recent and ancient resting spores of the species buried in sediments in the Baltic Sea can be revived and used for long-term evolutionary studies.

Place, publisher, year, edition, pages
Botanical Society of America, 2022
Keywords
Baltic Sea, Chaetoceros muelleri var. subsalsum, Germination rate, Resting spore concentration, Resurrection ecology
National Category
Botany Ecology
Research subject
Baltic and East European studies
Identifiers
urn:nbn:se:sh:diva-46593 (URN)10.1002/ajb2.1780 (DOI)000739921100001 ()34648178 (PubMedID)2-s2.0-85122424760 (Scopus ID)
Funder
The Foundation for Baltic and East European Studies, 75/2014
Available from: 2021-10-20 Created: 2021-10-20 Last updated: 2022-03-02Bibliographically approved
Hyttinen, O., Quintana Krupinski, N., Bennike, O., Wacker, L., Filipsson, H. L., Obrochta, S., . . . Kotilainen, A. T. (2021). Deglaciation dynamics of the Fennoscandian Ice Sheet in the Kattegat, the gateway between the North Sea and the Baltic Sea Basin. Boreas, 50(2), 351-368
Open this publication in new window or tab >>Deglaciation dynamics of the Fennoscandian Ice Sheet in the Kattegat, the gateway between the North Sea and the Baltic Sea Basin
Show others...
2021 (English)In: Boreas, ISSN 0300-9483, E-ISSN 1502-3885, Vol. 50, no 2, p. 351-368Article in journal (Refereed) Published
Abstract [en]

This paper presents an age–depth model based on an ultra-high-resolution, 80-m-thick sedimentary succession from a marine continental shelf basin, the Kattegat. This is an area of dynamic deglaciation of the Fennoscandian Ice Sheet during the Late Pleistocene. The Kattegat is also a transitional area between the saline North Sea and the brackish Baltic Sea. As such, it records general development of currents and exchange between these two systems. Data for the succession were provided through the Integrated Ocean Drilling Program Site M0060. The site indicates onset of deglaciation at c. 18 ka BP and relatively continuous sedimentation until 13 ka BP. At this point, sediments record a hiatus until c. 9–7 ka BP. The uppermost sedimentary unit contains redeposited material, but it is estimated to represent only the last c. 9–7 ka BP. The age–depth model is based on 17 select, radiocarbon-dated samples and is integrated with a set of physical and chemical proxies. The integrated records provide novel constraints on the timing of major palaeoenvironmental changes, such as the transition from glaciomarine proximal to glaciomarine distal and marine conditions, and their connections to known major events and processes in the region and the North Atlantic. Depositional evidence specifically documents connections between the Fennoscandian Ice Sheet behaviour and atmospheric and oceanic warming. Glacial retreat may have also depended on topographic factors such as changes in basin width and depth, linked to relative sea level changes and land uplift. The results indicate an early response of the Fennoscandian Ice Sheet to changing climate, and the ice sheet's possible influence on oceanic circulation during the Late Pleistocene deglaciation.

Place, publisher, year, edition, pages
John Wiley & Sons, 2021
National Category
Geology
Research subject
Environmental Studies; Baltic and East European studies
Identifiers
urn:nbn:se:sh:diva-42490 (URN)10.1111/bor.12494 (DOI)000594796000001 ()2-s2.0-85096951400 (Scopus ID)
Funder
The Foundation for Baltic and East European Studies, 75/2014Swedish Research Council, 826‐2012‐5114Swedish Research Council, 621‐2011‐5090
Available from: 2020-12-08 Created: 2020-12-08 Last updated: 2022-01-20Bibliographically approved
Warnock, J., Andrén, E., Juggins, S., Lewis, J., Ryves, D. B., Andrén, T. & Weckström, K. (2020). A high‐resolution diatom‐based Middle and Late Holocene environmental history of the Little Belt region, Baltic Sea. Boreas (1), 1-16
Open this publication in new window or tab >>A high‐resolution diatom‐based Middle and Late Holocene environmental history of the Little Belt region, Baltic Sea
Show others...
2020 (English)In: Boreas, ISSN 0300-9483, E-ISSN 1502-3885, no 1, p. 1-16Article in journal (Refereed) Published
Abstract [en]

The large‐scale shifts in the salinity of the Baltic Sea over the Holocene are well understood and have been comprehensively documented using sedimentary proxy records. More recent work has focused on understanding how past salinity fluctuations have affected other ecological parameters (e.g. primary productivity, nutrient content) of the Baltic basin, and salinity changes over key events and over short time scales are still not well understood. The International Ocean Drilling Program Expedition 347 cored the Baltic basin in order to collect basin‐wide environmental records through a glacial–interglacial cycle. Site M0059 is located in the Little Belt between the Baltic Sea and the Atlantic Ocean. A composite splice section from Site M0059 was analysed at a decadal resolution to study changes in salinity, nutrient conditions and other surface water column parameters based on changes in diatom assemblages and on quantitative diatom‐based salinity inferences. A mesotrophic slightly brackish assemblage is seen in the lowermost analysed depths, corresponding to 7800–7500 cal. a BP. An increase in salinity and nutrient content of the water column leads into a meso‐eutrophic brackish phase. The observed salinity increase is rapid, lasting from 7500 to 7150 cal. a BP. Subsequently, the Little Belt becomes oligotrophic and is dominated by tychopelagic diatoms from c. 7100 to c. 3900 cal. a BP. This interval contains some of the highest salinities observed followed by diatom assemblages similar to those of the Northern Atlantic Ocean, composed primarily of cosmopolitan open ocean marine diatoms. A return to tychopelagic productivity is seen from 3850 to 980 cal. a BP. Anthropogenic eutrophication is detected in the last 300 years of the record, which intensifies in the uppermost sediments. These results represent the first decadally resolved record in the region and provide new insight into the transition to a brackish basin and subsequent ecological development.

Place, publisher, year, edition, pages
John Wiley & Sons, 2020
National Category
Environmental Sciences
Research subject
Baltic and East European studies
Identifiers
urn:nbn:se:sh:diva-39395 (URN)10.1111/bor.12419 (DOI)000505508500001 ()2-s2.0-85074585844 (Scopus ID)
Funder
The Foundation for Baltic and East European Studies, 75/2014
Available from: 2019-11-15 Created: 2019-11-15 Last updated: 2022-05-03Bibliographically approved
Andrén, E., van Wirdum, F., Norbäck Ivarsson, L., Lönn, M., Moros, M. & Andrén, T. (2020). Medieval versus recent environmental conditions in the Baltic Proper, what was different a thousand years ago?. Palaeogeography, Palaeoclimatology, Palaeoecology, 555, Article ID 109878.
Open this publication in new window or tab >>Medieval versus recent environmental conditions in the Baltic Proper, what was different a thousand years ago?
Show others...
2020 (English)In: Palaeogeography, Palaeoclimatology, Palaeoecology, ISSN 0031-0182, E-ISSN 1872-616X, Vol. 555, article id 109878Article in journal (Refereed) Published
Abstract [en]

A sediment record from the western Gotland Basin, northwestern Baltic Proper, covering the last 1200 years, was investigated for past changes in climate and the environment using diatoms as a proxy. The aim is to compare the environmental conditions reconstructed during Medieval times with settings occurring the last century under influence of environmental stressors like eutrophication and climate change. The study core records more marine conditions in the western Gotland Basin surface waters during the Medieval Climate Anomaly (MCA; 950–1250C.E.), with a salinity of at least 8 psu compared to the present 6.5 psu. The higher salinity together with a strong summer-autumn stratification caused by warmer climate resulted in extensive long-lasting diatom blooms of Pseudosolenia calcar-avis, effectively enhancing the vertical export of organic carbon to the sediment and contributing to benthic hypoxia. Accordingly, our data support that a warm and dry climate induced the extensive hypoxic areas in the open Baltic Sea during the MCA. During the Little ice Age (LIA; 1400–1700C.E.), the study core records oxic bottom water conditions, decreasing salinity and less primary production. This was succeeded during the 20th century, about 1940, by environmental changes caused by human-induced eutrophication. Impact of climate change is visible in the diatom composition data starting about 1975C.E. and becoming more pronounced 2000C.E., visible as an increase of taxa that thrived in stratified waters during autumn blooms typically due to climate warming.

Place, publisher, year, edition, pages
Elsevier, 2020
Keywords
Baltic Sea, Diatoms, Phytoplankton seasonality, Medieval Climate Anomaly, Hypoxia
National Category
Environmental Sciences
Research subject
Environmental Studies; Baltic and East European studies
Identifiers
urn:nbn:se:sh:diva-41235 (URN)10.1016/j.palaeo.2020.109878 (DOI)000552137900020 ()2-s2.0-85086659693 (Scopus ID)
Funder
The Foundation for Baltic and East European Studies, 34/2013The Foundation for Baltic and East European Studies, 75/2014
Available from: 2020-06-24 Created: 2020-06-24 Last updated: 2020-08-13Bibliographically approved
Jørgensen, B. B., Andrén, T. & Marshall, I. P. (2020). Sub-seafloor biogeochemical processes and microbial life in the Baltic Sea. Environmental Microbiology, 22(5), 1688-1706
Open this publication in new window or tab >>Sub-seafloor biogeochemical processes and microbial life in the Baltic Sea
2020 (English)In: Environmental Microbiology, ISSN 1462-2912, E-ISSN 1462-2920, Vol. 22, no 5, p. 1688-1706Article, review/survey (Refereed) Published
Abstract [en]

The post-glacial Baltic Sea has experienced extreme changes that are archived today in the deep sediments. IODP Expedition 347 retrieved cores down to 100 m depth and studied the climate history and the deep biosphere. We here review the biogeochemical and microbiological highlights and integrate these with other studies from the Baltic seabed. Cell numbers, endospore abundance and organic matter mineralization rates are extremely high. A 100-fold drop in cell numbers with depth results from a small difference between growth and mortality in the ageing sediment. Evidence for growth derives from a D:L amino acid racemization model, while evidence for mortality derives from the abundance and potential activity of lytic viruses. The deep communities assemble at the bottom of the bioturbated zone from the founding surface community by selection of organisms suited for life under deep sediment conditions. The mean catabolic per-cell rate of microorganisms drops steeply with depth to a life in slow-motion, typical for the deep biosphere. The subsurface life under extreme energy limitation is facilitated by exploitation of recalcitrant substrates, by biochemical protection of nucleic acids and proteins, and by repair mechanisms for random mismatches in DNA or damaged amino acids in proteins. This article is protected by copyright. All rights reserved.

Place, publisher, year, edition, pages
Society for Applied Microbiology, 2020
National Category
Environmental Sciences
Research subject
Baltic and East European studies
Identifiers
urn:nbn:se:sh:diva-40096 (URN)10.1111/1462-2920.14920 (DOI)000510497600001 ()31970880 (PubMedID)2-s2.0-85078859648 (Scopus ID)
Funder
The Foundation for Baltic and East European Studies, 75/2014Swedish Research Council, 2012‐5114Danish National Research Foundation, 104
Note

Also funding: Det Frie Forskningsråd. Grant Number: #7014‐00196

Available from: 2020-02-03 Created: 2020-02-03 Last updated: 2022-03-02Bibliographically approved
Norbäck Ivarsson, L., Andrén, T., Moros, M., Andersen, T. J., Lönn, M. & Andrén, E. (2019). Baltic Sea Coastal Eutrophication in a Thousand Year Perspective. Frontiers in Environmental Science, 7, Article ID 88.
Open this publication in new window or tab >>Baltic Sea Coastal Eutrophication in a Thousand Year Perspective
Show others...
2019 (English)In: Frontiers in Environmental Science, E-ISSN 2296-665X, Vol. 7, article id 88Article in journal (Refereed) Published
Abstract [en]

Sediment cores from three sites along the east-coast of Sweden, north-western Baltic Proper, have been studied with respect to lithologies, geochemistry and diatom assemblages to trace and date early human impact with emphasis on nutrient discharge. The three sites Bråviken, Himmerfjärden and Ådfjärden, have been impacted to various degree during the last millennia by multiple stressors like excessive nutrient discharge and hazardous substances, leading to coastal hypoxia, eutrophication and pollution. These stressors are mainly caused by drivers in the drainage area as increased human population, changed land use and point sources as industries and a sewage treatment plant. Even though their detailed history differs, the results show similar general patterns for all three sites. We find no evidence in our data from the coastal zone supporting the hypothesis that the extensive areal distribution of hypoxia in the open Baltic Sea during the Medieval Climate Anomaly was caused by human impact. Timing of the onset of man-made eutrophication, as identified from d15N and changes in diatom composition, differs between the three sites, reflecting the site specific geography and local environmental histories of these areas. The onset of eutrophication dates to 1800 CE in Bråviken and Himmerfjärden areas, and to 1900 CE in the less urban area of Ådfjärden. We conclude that the recorded environmental changes during the last centuries are unique in a thousand year perspective.

Place, publisher, year, edition, pages
Frontiers Media S.A., 2019
Keywords
diatom stratigraphy, stable nitrogen isotopes, hypoxia, Medieval Climate Anomaly, NW Baltic proper, nutrient discharge
National Category
Environmental Sciences
Research subject
Environmental Studies; Baltic and East European studies
Identifiers
urn:nbn:se:sh:diva-38479 (URN)10.3389/fenvs.2019.00088 (DOI)000471701600001 ()2-s2.0-85068480167 (Scopus ID)1562/3.1.1/2013 (Local ID)1562/3.1.1/2013 (Archive number)1562/3.1.1/2013 (OAI)
Funder
The Foundation for Baltic and East European Studies, 34/2013Stockholm County CouncilThe Foundation for Baltic and East European Studies, 75/2014
Available from: 2019-06-25 Created: 2019-06-25 Last updated: 2022-03-02Bibliographically approved
Projects
IODP Expedition 347 Baltic Sea Paleoenvironment [2012-05114_VR]; Södertörn University; Publications
Stepanova, A., Obrochta, S., Quintana Krupinski, N. B., Hyttinen, O., Kotilainen, A. & Andrén, T. (2019). Late Weichselian to Holocene history of the Baltic Sea as reflected in ostracod assemblages. Boreas, 48(3), 761-778Mhatre, S. S., Kaufmann, S., Marshall, I. P., Obrochta, S., Andrén, T., Jørgensen, B. B. & Lomstein, B. A. (2019). Microbial biomass turnover times and clues to cellular protein repair in energy-limited deep Baltic Sea sediments. FEMS Microbiology Ecology, 95(6), Article ID fiz068. van Wirdum, F., Andrén, E., Wienholz, D., Kotthoff, U., Moros, M., Fanget, A.-S. -., . . . Andrén, T. (2019). Middle to late holocene variations in salinity and primary productivity in the central Baltic Sea: A multiproxy study from the landsort deep. Frontiers in Marine Science, 6, Article ID 51. Warnock, J., Bauersachs, T., Kotthoff, U., Brandt, H.-T. & Andrén, E. (2018). Holocene environmental history of the Ångermanälven Estuary, northern Baltic Sea. Boreas, 47(2), 593-608Hyttinen, O., Kotilainen, A. T., Virtasalo, J. J., Kekäläinen, P., Snowball, I., Obrochta, S. & Andrén, T. (2017). Holocene stratigraphy of the Ångermanälven River estuary, Bothnian Sea. Geo-Marine Letters, 37(3), 273-288Kotthoff, U., Groeneveld, J., Ash, J., Fanget, A.-S., Krupinski, N., Peyron, O., . . . Bauersachs, T. (2017). Reconstructing Holocene temperature and salinity variations in the western Baltic Sea region: a multi-proxy comparison from the Little Belt (IODP Expedition 347, Site M0059). Biogeosciences, 14, 5607-5632Obrochta, S. P., Andrén, T., Fazekas, S. Z., Lougheed, B. C., Snowball, I., Yokoyama, Y., . . . Fehr, A. (2017). The undatables: Quantifying uncertainty in a highly expanded Late Glacial-Holocene sediment sequence recovered from the deepest Baltic Sea basin—IODP Site M0063. Geochemistry Geophysics Geosystems, 18(3), 858-871Andrén, T., Jørgensen, B. B., Cotterill, C., Green, S. & Andrén, E. (2015). Baltic Sea Basin Paleoenvironment: Expedition 347 of the mission-specific drilling platform  from and to Kiel, Germany Sites M0059–M0067  12 September–1 November 2013. Integrated Ocean Drilling ProgramAndrén, T., Jørgensen, B. B., Cotterill, C. & Green, S. (2015). IODP expedition 347: Baltic Sea basin paleoenvironment and biosphere. Scientific Drilling, 20, 1-12Andrén, T., Andrén, E. & Zhang, R. (2014). Baltic Sea Basin Paleoenvironment: paleoenvironmental evolution of the Baltic Sea Basin through the last glacial cycle. Integrated Ocean Drilling Program
UPPBASER - Understanding Past and Present Baltic Sea Ecosystem Response - background for a sustainable future [34/2013_OSS]; Södertörn University; Publications
Andrén, E., van Wirdum, F., Norbäck Ivarsson, L., Lönn, M., Moros, M. & Andrén, T. (2020). Medieval versus recent environmental conditions in the Baltic Proper, what was different a thousand years ago?. Palaeogeography, Palaeoclimatology, Palaeoecology, 555, Article ID 109878. Norbäck Ivarsson, L. (2020). Tracing environmental change and human impact as recorded in sediments from coastal areas of the northwestern Baltic Proper. (Doctoral dissertation). Huddinge: Södertörns högskolaNorbäck Ivarsson, L., Andrén, T., Moros, M., Andersen, T. J., Lönn, M. & Andrén, E. (2019). Baltic Sea Coastal Eutrophication in a Thousand Year Perspective. Frontiers in Environmental Science, 7, Article ID 88. van Wirdum, F., Andrén, E., Wienholz, D., Kotthoff, U., Moros, M., Fanget, A.-S. -., . . . Andrén, T. (2019). Middle to late holocene variations in salinity and primary productivity in the central Baltic Sea: A multiproxy study from the landsort deep. Frontiers in Marine Science, 6, Article ID 51. Ning, W., Nielsen, A., Norbäck Ivarsson, L., Jilber, T., Åkesson, C., Slomp, C., . . . Filipsson, H. (2018). Anthropogenic and climatic impacts on a coastal environment in the Baltic Sea over the last 1000 years. Anthropocene, 21, 66-79Kotthoff, U., Groeneveld, J., Ash, J., Fanget, A.-S., Krupinski, N., Peyron, O., . . . Bauersachs, T. (2017). Reconstructing Holocene temperature and salinity variations in the western Baltic Sea region: a multi-proxy comparison from the Little Belt (IODP Expedition 347, Site M0059). Biogeosciences, 14, 5607-5632Andrén, E., Telford, R. J. & Jonsson, P. (2017). Reconstructing the history of eutrophication and quantifying total nitrogen reference conditions in Bothnian Sea coastal waters. Estuarine, Coastal and Shelf Science, 198, 320-328Andrén, E. & Andrén, T. (2014). Syrefria bottnar - orsakade av klimat, människa eller både och?. Havsutsikt (2), 12-14
Late Pleistocene and Holocene climate forcing on the Baltic Sea [75/2014_OSS]; Södertörn University; Publications
Sanyal, A., Larsson, J., van Wirdum, F., Andrén, T., Moros, M., Lönn, M. & Andrén, E. (2022). Not dead yet: Diatom resting spores can survive in nature for several millennia. American Journal of Botany, 67-82Hyttinen, O., Quintana Krupinski, N., Bennike, O., Wacker, L., Filipsson, H. L., Obrochta, S., . . . Kotilainen, A. T. (2021). Deglaciation dynamics of the Fennoscandian Ice Sheet in the Kattegat, the gateway between the North Sea and the Baltic Sea Basin. Boreas, 50(2), 351-368Warnock, J., Andrén, E., Juggins, S., Lewis, J., Ryves, D. B., Andrén, T. & Weckström, K. (2020). A high‐resolution diatom‐based Middle and Late Holocene environmental history of the Little Belt region, Baltic Sea. Boreas (1), 1-16Bathmann, U., Schubert, H., Andrén, E., Tuomi, L., Radziejewska, T., Kulinski, K. & Chubarenko, I. (2020). Editorial: Living Along Gradients: Past, Present, Future. Frontiers in Marine Science, 6, Article ID 801. Andrén, E., van Wirdum, F., Norbäck Ivarsson, L., Lönn, M., Moros, M. & Andrén, T. (2020). Medieval versus recent environmental conditions in the Baltic Proper, what was different a thousand years ago?. Palaeogeography, Palaeoclimatology, Palaeoecology, 555, Article ID 109878. Jørgensen, B. B., Andrén, T. & Marshall, I. P. (2020). Sub-seafloor biogeochemical processes and microbial life in the Baltic Sea. Environmental Microbiology, 22(5), 1688-1706Norbäck Ivarsson, L., Andrén, T., Moros, M., Andersen, T. J., Lönn, M. & Andrén, E. (2019). Baltic Sea Coastal Eutrophication in a Thousand Year Perspective. Frontiers in Environmental Science, 7, Article ID 88. Stepanova, A., Obrochta, S., Quintana Krupinski, N. B., Hyttinen, O., Kotilainen, A. & Andrén, T. (2019). Late Weichselian to Holocene history of the Baltic Sea as reflected in ostracod assemblages. Boreas, 48(3), 761-778Mhatre, S. S., Kaufmann, S., Marshall, I. P., Obrochta, S., Andrén, T., Jørgensen, B. B. & Lomstein, B. A. (2019). Microbial biomass turnover times and clues to cellular protein repair in energy-limited deep Baltic Sea sediments. FEMS Microbiology Ecology, 95(6), Article ID fiz068. van Wirdum, F., Andrén, E., Wienholz, D., Kotthoff, U., Moros, M., Fanget, A.-S. -., . . . Andrén, T. (2019). Middle to late holocene variations in salinity and primary productivity in the central Baltic Sea: A multiproxy study from the landsort deep. Frontiers in Marine Science, 6, Article ID 51.
Seaside - A multidisciplinary study of maritime environmental history [55/2017_OSS]; Södertörn University; Publications
Vinogradova, O., Gaillard, M.-J., Andrén, E., Palm, V., Rönnby, J., Dahl, M., . . . Andrén, T. (2024). 3000 Years of past regional and local land-use and land-cover change in the southeastern Swedish coastal area: Early human-induced increases in landscape openness as a potential nutrient source to the Baltic Sea coastal waters. The Holocene, 34(1), 56-73Katrantsiotis, C., Dahl, M., Palm, V., Rönnby, J., Andrén, T. & Andrén, E. (2023). Holocene relative sea level changes in the Vastervik-Gamlebyviken region on the southeast coast of Sweden, southern Baltic Sea. Boreas, 52(2), 206-222
REVIVE – Genomic signatures of diatom evolution on revived diatoms from natural archives [42/2019_OSS]; Södertörn University
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0001-5615-6088

Search in DiVA

Show all publications