sh.sePublications
Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • harvard-anglia-ruskin-university
  • apa-old-doi-prefix.csl
  • sodertorns-hogskola-harvard.csl
  • sodertorns-hogskola-oxford.csl
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Isaac, Sara
    et al.
    Walfridsson, Julian
    Södertörn University, School of Life Sciences. Karolinska Institute.
    Zohar, Tal
    Lazar, David
    Kahan, Tamar
    Ekwall, Karl
    Södertörn University, School of Life Sciences. Karolinska Institute.
    Cohen, Amikam
    Interaction of Epe1 with the heterochromatin assembly pathway in Schizosaccharomyces pombe2007In: Genetics, ISSN 0016-6731, E-ISSN 1943-2631, Vol. 175, no 4, p. 1549-1560Article in journal (Refereed)
    Abstract [en]

    Epe1 is a JmjC domain protein that antagonizes heterochromatization in Schizosaccharomyces pombe. Related JmjC domain proteins catalyze a histone demethylation reaction that depends on Fe(II) and alpha-ketoglutarate. However, no detectable demethylase activity is associated with Epe1, and its JmjC domain lacks conservation of Fe(II)-binding residues. We report that Swi6 recruits Epe1 to heterochromatin and that overexpression of epe1(+), like mutations in silencing genes or overexpression of swi6(+), upregulates expression of certain genes. A significant overlap was observed between the lists of genes that are upregulated by overexpression of epe1(+) and those that are upregulated by mutations in histone deacetylase genes. However, most of the common genes are not regulated by Clr4 histone methyltransferase. This suggests that Epe1 interacts with the heterochromatin assembly pathway at the stage of histone deacetylation. Mutational inactivation of Epe1 downregulates similar to 12% of S. pombe genes, and the list of these genes overlaps significantly with the lists of genes that are upregulated by mutations in silencing genes and genes that are hyperacetylated at their promoter regions in clr6-1 mutants. We propose that an interplay between the repressive HDACs activity and Epe1 helps to regulate gene expression in S. pombe.

  • 2.
    Senti, Gabriele
    et al.
    Södertörn University, School of Life Sciences.
    Ezcurra, Marina
    Löbner, Jana
    Södertörn University, School of Life Sciences.
    Schafer, William R.
    Swoboda, Peter
    Södertörn University, School of Life Sciences, Molecular biology.
    Worms With a Single Functional Sensory Cilium Generate Proper Neuron-Specific Behavioral Output2009In: Genetics, ISSN 0016-6731, E-ISSN 1943-2631, Vol. 183, no 2, p. 595-605Article in journal (Refereed)
    Abstract [en]

    Studying the development and mechanisms of sensory perception is challenging in organisms with complex neuronal networks. The worm Caenorhabditis elegans possesses a simple neuronal network of 302 neurons that includes 60 ciliated sensory neurons (CSNs) for detecting external sensory input. C. elegans is thus an excellent model in which to study sensory neuron development., function, and behavior. We have generated a genetic rescue system that allows in vivo analyses of isolated CSNs at both cellular and systemic levels. We used the RFX transcription factor DAF-19, a key regulator of ciliogenesis. Mutations in daf-19 result in the complete absence of all sensory cilia and thus of external sensory input. In daf-19 mutants, we used cell-specific rescue of DAF-19 function in selected neurons, thereby generating animals with single, fully functional CSNs. Otherwise and elsewhere these animals are completely devoid of any environmental input through cilia. We demonstrated the rescue of fully functional, single cilia using fluorescent markers, sensory behavioral assays, and calcium imaging. Our technique, functional rescue in single sensory cilia (FRISSC), can thus cell-autonomously and cell-specifically restore the function of single sensory neurons and their ability to respond to sensory input. FRISSC can be adapted to many different CSNs and thus constitutes an excellent tool for studying sensory behaviors, both in single animals and in populations of worms. FRISSC will be Very useful for the molecular dissection of sensory perception in CSNs and for the analysis of the developmental aspects of ciliogenesis.

  • 3. Thon, G
    et al.
    Bjerling, Pernilla
    Södertörn University, Avdelning Naturvetenskap.
    Bunner, C M
    Verhein-Hansen, J
    Expression-state boundaries in the mating-type region of fission yeast2002In: Genetics, ISSN 0016-6731, E-ISSN 1943-2631, Vol. 161, no 2, p. 611-622Article in journal (Refereed)
    Abstract [en]

    A transcriptionally silent chromosomal domain is found in the mating-type region of fission yeast. Here we show that this domain is delimited by 2-kb inverted repeats, IR-I, and IR-R, IR-I, and IR-R prevent the expansion of transcription-permissive chromatin into the silenced region and that of silenced chromatin into the expressed region. Their insulator activity is partially orientation dependent. The silencing defects that follow deletion or inversion of IR-R are suppressed by high dosage of the chromodomain protein Swi6. Combining chromosomal deletions and Swi6 overexpression shows that IR-I, and IR-R provide firm borders in a region where competition between silencing and transcriptional competence occurs. IR-R possesses autonomously replicating sequence (ARS) activity, leading to a model where replication factors, or replication itself, participate in boundary formation.

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • harvard-anglia-ruskin-university
  • apa-old-doi-prefix.csl
  • sodertorns-hogskola-harvard.csl
  • sodertorns-hogskola-oxford.csl
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf