sh.sePublications
Change search
Refine search result
1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • harvard-anglia-ruskin-university
  • apa-old-doi-prefix.csl
  • sodertorns-hogskola-harvard.csl
  • sodertorns-hogskola-oxford.csl
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Bernard, Pascal
    et al.
    Schmidt, Christine Katrin
    Vaur, Sabine
    Dheur, Sonia
    Drogat, Julie
    Genier, Sylvie
    Ekwall, Karl
    Södertörn University, School of Life Sciences.
    Uhlmann, Frank
    Javerzat, Jean-Paul
    Cell-cycle regulation of cohesin stability along fission yeast chromosomes2008In: EMBO Journal, ISSN 0261-4189, E-ISSN 1460-2075, Vol. 27, no 1, p. 111-121Article in journal (Refereed)
    Abstract [en]

    Sister chromatid cohesion is mediated by cohesin, but the process of cohesion establishment during S-phase is still enigmatic. In mammalian cells, cohesin binding to chromatin is dynamic in G1, but becomes stabilized during S-phase. Whether the regulation of cohesin stability is integral to the process of cohesion establishment is unknown. Here, we provide evidence that fission yeast cohesin also displays dynamic behavior. Cohesin association with G1 chromosomes requires continued activity of the cohesin loader Mis4/Ssl3, suggesting that repeated loading cycles maintain cohesin binding. Cohesin instability in G1 depends on wpl1, the fission yeast ortholog of mammalian Wapl, suggestive of a conserved mechanism that controls cohesin stability on chromosomes. wpl1 is nonessential, indicating that a change in wpl1-dependent cohesin dynamics is dispensable for cohesion establishment. Instead, we find that cohesin stability increases at the time of S-phase in a reaction that can be uncoupled from DNA replication. Hence, cohesin stabilization might be a pre-requisite for cohesion establishment rather than its consequence.

  • 2.
    Djupedal, Ingela
    et al.
    Södertörn University, School of Life Sciences. Karolinska Institutet.
    Kos-Braun, Isabelle C.
    University of Edinburgh, Edinburgh, UK / Universität Heidelberg, Heidelberg, Germany.
    Mosher, Rebecca A.
    University of Cambridge, Cambridge, UK.
    Söderholm, Niklas
    Karolinska Institutet.
    Simmer, Femke
    University of Edinburgh, Edinburgh, UK.
    Hardcastle, Thomas J.
    University of Cambridge, Cambridge, UK.
    Fender, Aurelie
    Uppsala universitet.
    Heidrich, Nadja
    Uppsala universitet.
    Kagansky, Alexander
    University of Edinburgh, Edinburgh, UK.
    Bayne, Elizabeth
    University of Edinburgh, Edinburgh, UK.
    Wagner, E. Gerhart H.
    Uppala universitet.
    Baulcombe, David C.
    University of Cambridge, Cambridge, UK.
    Allshire, Robin C.
    University of Edinburgh, Edinburgh, UK.
    Ekwall, Karl
    Södertörn University, School of Life Sciences, Molecular biology. Karolinska Institutet.
    Analysis of small RNA in fission yeast; centromeric siRNAs are potentially generated through a structured RNA2009In: EMBO Journal, ISSN 0261-4189, E-ISSN 1460-2075, Vol. 28, no 24, p. 3832-3844Article in journal (Refereed)
    Abstract [en]

    The formation of heterochromatin at the centromeres in fission yeast depends on transcription of the outer repeats. These transcripts are processed into siRNAs that target homologous loci for heterochromatin formation. Here, high throughput sequencing of small RNA provides a comprehensive analysis of centromere-derived small RNAs. We found that the centromeric small RNAs are Dcr1 dependent, carry 50-monophosphates and are associated with Ago1. The majority of centromeric small RNAs originate from two remarkably well-conserved sequences that are present in all centromeres. The high degree of similarity suggests that this non-coding sequence in itself may be of importance. Consistent with this, secondary structure-probing experiments indicate that this centromeric RNA is partially double-stranded and is processed by Dicer in vitro. We further demonstrate the existence of small centromeric RNA in rdp1D cells. Our data suggest a pathway for siRNA generation that is distinct from the well-documented model involving RITS/RDRC. We propose that primary transcripts fold into hairpin-like structures that may be processed by Dcr1 into siRNAs, and that these siRNAs may initiate heterochromatin formation independent of RDRC activity. The EMBO Journal (2009) 28, 3832-3844. doi: 10.1038/emboj.2009.351; Published online 26 November 2009

  • 3.
    Durand-Dubief, Mickael
    et al.
    Södertörn University, School of Life Sciences. Karolinska Institutet.
    Sinha, Indranil
    Södertörn University, School of Life Sciences. Karolinska Institutet.
    Fagerström-Billai, Fredrik
    Södertörn University, School of Life Sciences. Karolinska Institutet.
    Bonilla, Carolina
    Södertörn University, School of Life Sciences. Karolinska Institutet.
    Wright, Anthony
    Södertörn University, School of Life Sciences. Karolinska Instiutet.
    Grunstein, Michael
    University of California, Los Angeles, CA, USA.
    Ekwall, Karl
    Södertörn University, School of Life Sciences. Karolinska Institutet.
    Specific functions for the fission yeast Sirtuins Hst2 and Hst4 in gene regulation and retrotransposon silencing2007In: EMBO Journal, ISSN 0261-4189, E-ISSN 1460-2075, Vol. 26, no 10, p. 2477-2488Article in journal (Refereed)
    Abstract [en]

    Expression profiling, ChiP-CHIP and phenotypic analysis were used to investigate the functional relationships of class III NAD(+)-dependent HDACs (Sirtuins) in fission yeast. We detected significant histone acetylation increases in Sirtuin mutants at their specific genomic binding targets and were thus able to identify an in vivo substrate preference for each Sirtuin. At heterochromatic loci, we demonstrate that although Hst2 is mainly cytoplasmic, a nuclear pool of Hst2 colocalizes with the other Sirtuins at silent regions (cen, mat, tel, rDNA), and that like the other Sirtuins, Hst2 is required for rDNA and centromeric silencing. Interestingly we found specific functions for the fission yeast Sirtuins Hst2 and Hst4 in gene regulation. Hst2 directly represses genes involved in transport and membrane function, whereas Hst4 represses amino-acid biosynthesis genes and Tf2 retrotransposons. A specific role for Hst4 in Tf2 50 mRNA processing was revealed. Thus, Sirtuins share functions at many genomic targets, but Hst2 and Hst4 have also evolved unique functions in gene regulation.

  • 4.
    Walfridsson, Julian
    et al.
    Södertörn University, School of Life Sciences.
    Khorosjutina, Olga
    Matikainen, Paulina
    Gustafsson, Claes M.
    Ekwall, Karl
    Södertörn University, School of Life Sciences.
    A genome-wide role for CHD remodelling factors and Nap1 in nucleosome disassembly2007In: EMBO Journal, ISSN 0261-4189, E-ISSN 1460-2075, Vol. 26, no 12, p. 2868-2879Article in journal (Refereed)
    Abstract [en]

    Chromatin remodelling factors and histone chaperones were previously shown to cooperatively affect nucleosome assembly and disassembly processes in vitro. Here, we show that Schizosaccharomyces pombe CHD remodellers, the Hrp1 and Hrp3 paralogs physically interact with the histone chaperone Nap1. Genome- wide analysis of Hrp1, Hrp3 and Nap1 occupancy, combined with nucleosome density measurements revealed that the CHD factors and Nap1 colocalized in particular to promoter regions where they remove nucleosomes near the transcriptional start site. Hrp1 and Hrp3 also regulate nucleosome density in coding regions, where they have redundant roles to stimulate transcription. Previously, DNA replication-dependent and -independent nucleosome disassembly processes have been described. We found that nucleosome density increased in the hrp1 mutant in the absence of DNA replication. Finally, regions where nucleosome density increased in hrp1, hrp3 and nap1 mutants also showed nucleosome density and histone modification changes in HDAC and HAT mutants. Thus, this study revealed an important in vivo role for CHD remodellers and Nap1 in nucleosome disassembly at promoters and coding regions, which are linked to changes in histone acetylation.

  • 5.
    Wiren, Marianna
    et al.
    Södertörn University, School of Life Sciences. Karolinska Institutet.
    Silverstein, Rebecca A
    Södertörn University, School of Life Sciences. Karolinska Institutet.
    Sinha, Indranil
    Södertörn University, School of Life Sciences. Karolinska Institutet.
    Walfridsson, Julian
    Södertörn University, School of Life Sciences. Karolinska Institutet.
    Lee, Hang-mao
    Södertörn University, School of Life Sciences. Karolinska Institutet.
    Laurenson, P
    University of California, San Diego, USA.
    Pillus, L
    University of California, San Diego, USA.
    Robyr, D
    University of California, Los Angeles, USA.
    Grunstein, M
    University of California, Los Angeles, USA.
    Ekwall, Karl
    Södertörn University, School of Life Sciences. Karolinska Institutet.
    Genomewide analysis of nucleosome density histone acetylation and HDAC function in fission yeast2005In: EMBO Journal, ISSN 0261-4189, E-ISSN 1460-2075, Vol. 24, no 16, p. 2906-2918Article in journal (Refereed)
    Abstract [en]

    We have conducted a genomewide investigation into the enzymatic specificity, expression profiles, and binding locations of four histone deacetylases (HDACs), representing the three different phylogenetic classes in fission yeast ( Schizosaccharomyces pombe). By directly comparing nucleosome density, histone acetylation patterns and HDAC binding in both intergenic and coding regions with gene expression profiles, we found that Sir2 ( class III) and Hos2 ( class I) have a role in preventing histone loss; Clr6 ( class I) is the principal enzyme in promoter-localized repression. Hos2 has an unexpected role in promoting high expression of growth-related genes by deacetylating H4K16Ac in their open reading frames. Clr3 ( class II) acts cooperatively with Sir2 throughout the genome, including the silent regions: rDNA, centromeres, mat2/3 and telomeres. The most significant acetylation sites are H3K14Ac for Clr3 and H3K9Ac for Sir2 at their genomic targets. Clr3 also affects subtelomeric regions which contain clustered stress- and meiosis-induced genes. Thus, this combined genomic approach has uncovered different roles for fission yeast HDACs at the silent regions in repression and activation of gene expression.

1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • harvard-anglia-ruskin-university
  • apa-old-doi-prefix.csl
  • sodertorns-hogskola-harvard.csl
  • sodertorns-hogskola-oxford.csl
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf