sh.sePublications
Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • harvard-anglia-ruskin-university
  • apa-old-doi-prefix.csl
  • sodertorns-hogskola-harvard.csl
  • sodertorns-hogskola-oxford.csl
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Djupedal, Ingela
    et al.
    Södertörn University, School of Life Sciences. Karolinska Institutet.
    Portoso, M
    University of Edinburgh, Edinburgh, UK.
    Spåhr, H
    Karolinska Institutet.
    Bonilla, Carolina
    Södertörn University, School of Life Sciences. Karolinska Institutet.
    Gustafsson, C M
    Karolinska Institutet.
    Allshire, R C
    University of Edinburgh, Edinburgh, UK.
    Ekwall, Karl
    Södertörn University, School of Life Sciences. Karolinska Institutet.
    RNA Pol II subunit Rpb7 promotes centromeric transcription and RNAi-directed chromatin silencing2005In: Genes & Development, ISSN 0890-9369, E-ISSN 1549-5477, Vol. 19, no 19, p. 2301-2306Article in journal (Refereed)
    Abstract [en]

    Fission yeast centromeric repeats are transcribed into small interfering RNA (siRNA) precursors (pre-siRNAs), which are processed by Dicer to direct heterochromatin formation. Recently, Rpb1 and Rpb2 subunits of RNA polymerase II (RNA Pol II) were shown to mediate RNA interference (RNAi)-directed chromatin modification but did not affect pre-siRNA levels. Here we show that another Pol II subunit, Rpb7 has a specific role in presiRNA transcription. We define a centromeric presiRNA promoter from which initiation is exquisitely sensitive to the rpb7-G150D mutation. In contrast to other Pol II subunits, Rpb7 promotes pre-siRNA transcription required for RNAi-directed chromatin silencing.

  • 2.
    Durand-Dubief, Mickael
    et al.
    Södertörn University, School of Life Sciences. Karolinska Institutet.
    Sinha, Indranil
    Södertörn University, School of Life Sciences. Karolinska Institutet.
    Fagerström-Billai, Fredrik
    Södertörn University, School of Life Sciences. Karolinska Institutet.
    Bonilla, Carolina
    Södertörn University, School of Life Sciences. Karolinska Institutet.
    Wright, Anthony
    Södertörn University, School of Life Sciences. Karolinska Instiutet.
    Grunstein, Michael
    University of California, Los Angeles, CA, USA.
    Ekwall, Karl
    Södertörn University, School of Life Sciences. Karolinska Institutet.
    Specific functions for the fission yeast Sirtuins Hst2 and Hst4 in gene regulation and retrotransposon silencing2007In: EMBO Journal, ISSN 0261-4189, E-ISSN 1460-2075, Vol. 26, no 10, p. 2477-2488Article in journal (Refereed)
    Abstract [en]

    Expression profiling, ChiP-CHIP and phenotypic analysis were used to investigate the functional relationships of class III NAD(+)-dependent HDACs (Sirtuins) in fission yeast. We detected significant histone acetylation increases in Sirtuin mutants at their specific genomic binding targets and were thus able to identify an in vivo substrate preference for each Sirtuin. At heterochromatic loci, we demonstrate that although Hst2 is mainly cytoplasmic, a nuclear pool of Hst2 colocalizes with the other Sirtuins at silent regions (cen, mat, tel, rDNA), and that like the other Sirtuins, Hst2 is required for rDNA and centromeric silencing. Interestingly we found specific functions for the fission yeast Sirtuins Hst2 and Hst4 in gene regulation. Hst2 directly represses genes involved in transport and membrane function, whereas Hst4 represses amino-acid biosynthesis genes and Tf2 retrotransposons. A specific role for Hst4 in Tf2 50 mRNA processing was revealed. Thus, Sirtuins share functions at many genomic targets, but Hst2 and Hst4 have also evolved unique functions in gene regulation.

  • 3.
    Opel, Michael
    et al.
    University of Cambridge, Cambridge, United Kingdom.
    Lando, David
    Gurdon Institute and Department of Pathology, Cambridge, United Kingdom.
    Bonilla, Carolina
    Södertörn University, School of Life Sciences. Karolinska Institutet.
    Trewick, Sarah C.
    University of Edinburgh, Edinburgh, United Kingdom.
    Boukaba, Abdelhalim
    University of Edinburgh, Edinburgh, United Kingdom.
    Walfridsson, Julian
    Södertörn University, School of Life Sciences. Karolinska Institutet.
    Cauwood, James
    University of Cambridge, Cambridge, United Kingdom.
    Werler, Petra J. H.
    University of Sussex, Falmer, Sussex, United Kingdom.
    Carr, Antony M.
    University of Sussex, Falmer, Sussex, United Kingdom.
    Kouzarides, Tony
    Gurdon Institute and Department of Pathology, Cambridge, United Kingdom .
    Murzina, Natalia V.
    University of Cambridge, Cambridge, United Kingdom.
    Allshire, Robin C.
    University of Edinburgh, Edinburgh, United Kingdom.
    Ekwall, Karl
    Södertörn University, School of Life Sciences. Karolinska Institutet.
    Laue, Ernest D.
    University of Cambridge, Cambridge, United Kingdom.
    Genome-Wide Studies of Histone Demethylation Catalysed by the Fission Yeast Homologues of Mammalian LSD12007In: PLOS ONE, E-ISSN 1932-6203, Vol. 2, no 4, article id e386Article in journal (Refereed)
    Abstract [en]

    In order to gain a more global view of the activity of histone demethylases, we report here genome-wide studies of the fission yeast SWIRM and polyamine oxidase (PAO) domain homologues of mammalian LSD1. Consistent with previous work we find that the two S. pombe proteins, which we name Swm1 and Swm2 (after SWIRM1 and SWIRM2), associate together in a complex. However, we find that this complex specifically demethylates lysine 9 in histone H3 (H3K9) and both up-and down-regulates expression of different groups of genes. Using chromatin-immunoprecipitation, to isolate fragments of chromatin containing either H3K4me2 or H3K9me2, and DNA microarray analysis (ChIP-chip), we have studied genome-wide changes in patterns of histone methylation, and their correlation with gene expression, upon deletion of the swm1(+) gene. Using hyper-geometric probability comparisons we uncover genetic links between lysine-specific demethylases, the histone deacetylase Clr6, and the chromatin remodeller Hrp1. The data presented here demonstrate that in fission yeast the SWIRM/PAO domain proteins Swm1 and Swm2 are associated in complexes that can remove methyl groups from lysine 9 methylated histone H3. In vitro, we show that bacterially expressed Swm1 also possesses lysine 9 demethylase activity. In vivo, loss of Swm1 increases the global levels of both H3K9me2 and H3K4me2. A significant accumulation of H3K4me2 is observed at genes that are up-regulated in a swm1 deletion strain. In addition, H3K9me2 accumulates at some genes known to be direct Swm1/2 targets that are down-regulated in the swm1 Delta strain. The in vivo data indicate that Swm1 acts in concert with the HDAC Clr6 and the chromatin remodeller Hrp1 to repress gene expression. In addition, our in vitro analyses suggest that the H3K9 demethylase activity requires an unidentified post-translational modification to allow it to act. Thus, our results highlight complex interactions between histone demethylase, deacetylase and chromatin remodelling activities in the regulation of gene expression.

  • 4. Schramke, V
    et al.
    Sheedy, D M
    Denli, A M
    Bonilla, Carolina
    Södertörn University, School of Life Sciences.
    Ekwall, Karl
    Södertörn University, School of Life Sciences. Karolinska Institutet.
    Hannon, G J
    Allshire, R C
    RNA-interference-directed chromatin modification coupled to RNA polymerase II transcription2005In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 435, no 7046, p. 1275-1279Article in journal (Refereed)
    Abstract [en]

    RNA interference (RNAi) acts on long double-stranded RNAs (dsRNAs) in a variety of eukaryotes to generate small interfering RNAs that target homologous messenger RNA, resulting in their destruction. This process is widely used to 'knock-down' the expression of genes of interest to explore phenotypes(1-3). In plants(3-5), fission yeast(6-8), ciliates(9,10), flies(11) and mammalian cells(12,13), short interfering RNAs (siRNAs) also induce DNA or chromatin modifications at the homologous genomic locus, which can result in transcriptional silencing or sequence elimination(14). siRNAs may direct DNA or chromatin modification by siRNA - DNA interactions at the homologous locus(4,5). Alternatively, they may act by interactions between siRNA and nascent transcript(15,16). Here we show that in fission yeast ( Schizosaccharomyces pombe), chromatin modifications are only directed by RNAi if the homologous DNA sequences are transcribed. Furthermore, transcription by exogenous T7 polymerase is not sufficient. Ago1, a component of the RNAi effector RISC/RITS complex, associates with target transcripts and RNA polymerase II. Truncation of the regulatory carboxy-terminal domain (CTD) of RNApol II disrupts transcriptional silencing, indicating that, like other RNA processing events(17-19), RNAi-directed chromatin modification is coupled to transcription.

1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • harvard-anglia-ruskin-university
  • apa-old-doi-prefix.csl
  • sodertorns-hogskola-harvard.csl
  • sodertorns-hogskola-oxford.csl
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf