Sewage treatment plant effluents contain a complex mixture of pharmaceuticals, personal care products and industrial chemicals, thus exposing aquatic organisms. Still, the consequences of exposure to combinations of different classes of drugs is largely unknown. In this study, we expose adult zebrafish (Danio rerio) males and females to low, environmentally relevant concentrations of the endocrine disrupting chemical 17α-ethinyl estradiol (EE2) and the selective serotonin re-uptake inhibitor (SSRI) citalopram, alone and in combination, and analyse three non-reproductive behaviours of importance for population fitness.
Two weeks exposure to 0.1 and 0.5 ng/LEE2 resulted in increased anxiety in males in the scototaxis (light/dark preference) test. Significantly longer latency periods before entering the white zone and fewer visits in the white zone were observed in males exposed to both 0.1 and 0.5 ng/LEE2 compared to unexposed males. No significant effects of citalopram alone (0.1 and 0.5 µg/L) were observed in the scototaxis test. The combined exposures (0.1 ng/L EE2 + 0.1 µg/L citalopram and 0.5 ng/L EE2 + 0.5 µg/L citalopram) resulted in abolishment of the anxiogenic effects of EE2, with significantly shorter latency period (low dose) and more transitions to white (high and low dose) than in fish exposed to EE2 alone. No significant effects of either EE2, citalopramor the combination of the two were observed in females. In the novel tank test, significantly more transitions to the upper half of the tank were observed in males exposed to 0.1 µg/L citalopram alone compared to unexposed males while males exposed to 0.1 ng/lEE2 had significantly shorter latency period to enter the upper half. Exposure to the combination of the two low concentrations did, however, result in a significantly longer latency and fewer transitions to upper half compared to both control, EE2- and citalopram-exposed males. These males also spent significantly less time in the upper half than the fish exposed to 0.1 ng/l EE2 or 0.1 µg/l citalopram alone. No significant effects on novel tank behaviour were observed in females or males exposed to the higher concentrations. In the shoaling test, males exposed to 0.1 µg/L citalopram and females exposed to 0.5 ng/l EE2 made significantly fewer transitions away from peers while males exposed to 0.1 µg/L citalopram + 0.1 ng/l EE2 performed significantly more transitions than the fish exposed to 0.1 µg/L citalopram alone.
In conclusion, this study shows that very low concentrations ofEE2, at or slightly above the predicted noeffect concentration (NOEC), affects anxiety in zebrafish males. Furthermore, citalopram, in spite of marginal effect of its own at such low levels, counteracts the response to EE2. This study represents an initial effort to understand the effects on water-living organisms of the cocktails of anthropogenic substances contaminating aquatic environments.