sh.sePublications
Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • harvard-anglia-ruskin-university
  • apa-old-doi-prefix.csl
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Lin, Yuan
    et al.
    SINTEF Materials and Chemistry, Trondheim, Norway.
    Shiomi, Junichiro
    University of Tokyo, Tokyo, Japan.
    Maruyama, Shigeo
    University of Tokyo, Tokyo, Japan.
    Amberg, Gustav
    KTH.
    Dielectric relaxation of water inside a single-walled carbon nanotube2009In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 80, no 4, article id 045419Article in journal (Refereed)
    Abstract [en]

    We report a molecular dynamics study of anisotropic dynamics and dielectric properties of water confined inside a single-walled carbon nanotube (SWNT) at room temperature. The model includes dynamics of an SWNT described by a realistic potential function. A comparison with simulations assuming a rigid nanotube demonstrates that the popular assumption severely overestimates the dielectric constant for small diameter SWNTs. Simulations of water inside flexible SWNTs with various diameters reveal strong directional dependence of the dynamic and dielectric properties due to the confinement effect. The obtained dielectric permittivity spectra (DPS) identify two different dipolar relaxation frequencies corresponding to the axial and the cross-sectional directions, which are significantly smaller and larger than the single relaxation frequency of bulk water, respectively. The frequency variation increases as the SWNT diameter decreases. The results suggest that DPS can be used as a fingerprint of water inside SWNTs to monitor the water intrusion into SWNTs.

  • 2.
    Lin, Yuan
    et al.
    KTH.
    Shiomi, Junichiro
    University of Tokyo, Tokyo, Japan.
    Maruyama, Shigeo
    University of Tokyo, Tokyo, Japan.
    Amberg, Gustav
    KTH.
    Electrothermal flow in dielectrophoresis of single-walled carbon nanotubes2007In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 76, no 4, article id 045419Article in journal (Refereed)
    Abstract [en]

    We theoretically investigate the impact of the electrothermal flow on the dielectrophoretic separation of single-walled carbon nanotubes (SWNTs). The electrothermal flow is observed to control the motions of semiconducting SWNTs in a sizable domain near the electrodes under typical experimental conditions, therefore helping the dielectrophoretic force to attract semiconducting SWNTs in a broader range. Moreover, with the increase of the surfactant concentration, the electrothermal flow effect is enhanced, and with the change of frequency, the pattern of the electrothermal flow changes. It is shown that under some typical experimental conditions of dielectrophoretic separation of SWNTs, the electrothermal flow is a dominating factor in determining the motion of SWNTs.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • harvard-anglia-ruskin-university
  • apa-old-doi-prefix.csl
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf