sh.sePublications
Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • harvard-anglia-ruskin-university
  • apa-old-doi-prefix.csl
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Dahlgren, Elin
    et al.
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies. Swedish Environm Protect Agcy.
    Lehtilä, Kari
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Tolerance to apical and leaf damage of Raphanus raphanistrum in different competitive regimes2015In: Ecology and Evolution, ISSN 2045-7758, E-ISSN 2045-7758, Vol. 5, no 22, p. 5193-5202Article in journal (Refereed)
    Abstract [en]

    Tolerance to herbivory is an adaptation that promotes regrowth and maintains fitness in plants after herbivore damage. Here, we hypothesized that the effect of competition on tolerance can be different for different genotypes within a species and we tested how tolerance is affected by competitive regime and damage type. We inflicted apical or leaf damage in siblings of 29 families of an annual plant Raphanus raphanistrum (Brassicaceae) grown at high or low competition. There was a negative correlation of family tolerance levels between competition treatments: plant families with high tolerance to apical damage in the low competition treatment had low tolerance to apical damage in the high competition treatment and vice versa. We found no costs of tolerance, in terms of a trade-off between tolerance to apical and leaf damage or between tolerance and competitive ability, or an allocation cost in terms of reduced fitness of highly tolerant families in the undamaged state. High tolerance bound to a specific competitive regime may entail a cost in terms of low tolerance if competitive regime changes. This could act as a factor maintaining genetic variation for tolerance.

  • 2.
    Jahnke, Marlene
    et al.
    University of Gothenburg / University of Groningen, Groningen, Netherlands.
    Gullström, Martin
    Stockholm University / University of Gothenburg.
    Larsson, Josefine
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Asplund, Maria E.
    Stockholm University / University of Gothenburg.
    Mgeleka, Said
    Stockholm University / Tanzania Fisheries Research Institute (TAFIRI), Dar es Salaam, Tanzania.
    Silas, Mathew Ogalo
    Stockholm University / Tanzania Fisheries Research Institute (TAFIRI), Dar es Salaam, Tanzania.
    Hoamby, Arielle
    Institut Halieutique et des Science Marine Toliara (IH.SM), Toliara, Madagascar.
    Mahafina, Jamal
    Institut Halieutique et des Science Marine Toliara (IH.SM), Toliara, Madagascar.
    Nordlund, Lina Mtwana
    Stockholm University / Uppsala University.
    Population genetic structure and connectivity of the seagrass Thalassia hemprichii in the Western Indian Ocean is influenced by predominant ocean currents2019In: Ecology and Evolution, ISSN 2045-7758, E-ISSN 2045-7758Article in journal (Refereed)
    Abstract [en]

    This study is the first large-scale genetic population study of a widespread climax species of seagrass, Thalassia hemprichii, in the Western Indian Ocean (WIO). The aim was to understand genetic population structure and connectivity of T. hemprichii in relation to hydrodynamic features. We genotyped 205 individual seagrass shoots from 11 sites across the WIO, spanning over a distance of similar to 2,700 km, with twelve microsatellite markers. Seagrass shoots were sampled in Kenya, Tanzania (mainland and Zanzibar), Mozambique, and Madagascar: 4-26 degrees S and 33-48 degrees E. We assessed clonality and visualized genetic diversity and genetic population differentiation. We used Bayesian clustering approaches (TESS) to trace spatial ancestry of populations and used directional migration rates (DivMigrate) to identify sources of gene flow. We identified four genetically differentiated groups: (a) samples from the Zanzibar channel; (b) Mozambique; (c) Madagascar; and (d) the east coast of Zanzibar and Kenya. Significant pairwise population genetic differentiation was found among many sites. Isolation by distance was detected for the estimated magnitude of divergence (D-EST), but the three predominant ocean current systems (i.e., East African Coastal Current, North East Madagascar Current, and the South Equatorial Current) also determine genetic connectivity and genetic structure. Directional migration rates indicate that Madagascar acts as an important source population. Overall, clonality was moderate to high with large differences among sampling sites, indicating relatively low, but spatially variable sexual reproduction rates. The strongest genetic break was identified for three sites in the Zanzibar channel. Although isolation by distance is present, this study suggests that the three regionally predominant ocean current systems (i.e., East African Coastal Current, North East Madagascar Current, and the South Equatorial Current) rather than distance determine genetic connectivity and structure of T. hemprichii in the WIO. If the goal is to maintain genetic connectivity of T. hemprichii within the WIO, conservation planning and implementation of marine protection should be considered at the regional scale-across national borders.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • harvard-anglia-ruskin-university
  • apa-old-doi-prefix.csl
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf