sh.sePublikasjoner
Endre søk
Begrens søket
1 - 3 of 3
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • harvard-anglia-ruskin-university
  • apa-old-doi-prefix.csl
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Backman, Agneta
    et al.
    Södertörns högskola, Institutionen för kemi, biologi, geografi och miljövetenskap. Karolinska Institutet.
    Jansson, Janet K
    Södertörns högskola, Institutionen för kemi, biologi, geografi och miljövetenskap. SLU.
    Degradation of 4-chlorophenol at low temperature and during extreme temperature fluctuations by Arthrobacter chlorophenolicus A62004Inngår i: Microbial Ecology, ISSN 0095-3628, E-ISSN 1432-184X, Vol. 48, nr 2, s. 246-253Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Low average temperatures and temperature fluctuations in temperate soils challenge the efficacy of microbial strains used for clean up of pollutants. In this study, we investigated the cold tolerance of Arthrobacter chlorophenolicus A6, a microorganism previously shown to degrade high concentrations of 4-chlorophenol at 28degreesC. Luciferase activity from a luc-tagged derivative of the strain (A6L) was used to monitor the metabolic status of the population during 4-chlorophenol degradation. The A6L strain could degrade 200-300 mug mL(-1) 4-chlorophenol in pure cultures incubated at 5degreesC, although rates of degradation, growth and the metabolic status of the cells were lower at 5degreesC compared to 28degreesC. When subjected to temperature fluctuations between 5 and 28degreesC, A6L continued to degrade 4-chlorophenol and remained active. In soil microcosm experiments, the degradation rates were significantly faster the first week at 28degreesC, compared to 5degreesC. However, this difference was no longer seen after 7 days, and equally low 4-chlorophenol concentrations were reached after 17 days at both temperatures. During 4-chlorophenol degradation in soil, CFU and luciferase activity values remained constant at both 5 and 28degreesC. However, once most of the 4-chlorophenol was degraded, both values decreased by 1-1.5 logarithmic values at 28degreesC, whereas they remained constant at 5degreesC, indicating a high survival of the cells at low temperatures. Because of the ability of A. chlorophenolicus A6 to degrade high concentrations of 4-chlorophenol at 5degreesC, together with its tolerance to temperature fluctuations and stress conditions found in soil, this strain is a promising candidate for bioaugmentation of chlorophenol-contaminated soil in temperate climates.

  • 2.
    Espínola, Fernando
    et al.
    Centro Nacional Patagónico, Puerto Madryn, Argentina.
    Dionisi, Hebe M
    Centro Nacional Patagónico, Puerto Madryn, Argentina.
    Borglin, Sharon
    Lawrence Berkeley National Laboratory, Berkeley, USA.
    Brislawn, Colin J
    Pacific Northwest National Laboratory, Richland, USA.
    Jansson, Janet K.
    Pacific Northwest National Laboratory, Richland, USA.
    Mac Cormack, Walter P
    Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina / Instituto Antártico Argentino, Buenos Aires, Argentina.
    Carroll, JoLynn
    UiT The Arctic University of Norway, Tromsø, Norway.
    Sjöling, Sara
    Södertörns högskola, Institutionen för naturvetenskap, miljö och teknik, Miljövetenskap.
    Lozada, Mariana
    Centro Nacional Patagónico, Puerto Madryn, Argentina.
    Metagenomic Analysis of Subtidal Sediments from Polar and Subpolar Coastal Environments Highlights the Relevance of Anaerobic Hydrocarbon Degradation Processes2018Inngår i: Microbial Ecology, ISSN 0095-3628, E-ISSN 1432-184X, nr 1, s. 123-139Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In this work, we analyzed the community structure and metabolic potential of sediment microbial communities in high-latitude coastal environments subjected to low to moderate levels of chronic pollution. Subtidal sediments from four low-energy inlets located in polar and subpolar regions from both Hemispheres were analyzed using large-scale 16S rRNA gene and metagenomic sequencing. Communities showed high diversity (Shannon's index 6.8 to 10.2), with distinct phylogenetic structures (<40% shared taxa at the Phylum level among regions) but similar metabolic potential in terms of sequences assigned to KOs. Environmental factors (mainly salinity, temperature, and in less extent organic pollution) were drivers of both phylogenetic and functional traits. Bacterial taxa correlating with hydrocarbon pollution included families of anaerobic or facultative anaerobic lifestyle, such as Desulfuromonadaceae, Geobacteraceae, and Rhodocyclaceae. In accordance, biomarker genes for anaerobic hydrocarbon degradation (bamA, ebdA, bcrA, and bssA) were prevalent, only outnumbered by alkB, and their sequences were taxonomically binned to the same bacterial groups. BssA-assigned metagenomic sequences showed an extremely wide diversity distributed all along the phylogeny known for this gene, including bssA sensu stricto, nmsA, assA, and other clusters from poorly or not yet described variants. This work increases our understanding of microbial community patterns in cold coastal sediments, and highlights the relevance of anaerobic hydrocarbon degradation processes in subtidal environments.

  • 3. Unge, A
    et al.
    Jansson, Janet
    Södertörns högskola, Avdelning Naturvetenskap.
    Monitoring population size, activity, and distribution of gfp-luxAB-tagged Pseudomonas fluorescens SBW25 during colonization of wheat2001Inngår i: Microbial Ecology, ISSN 0095-3628, E-ISSN 1432-184X, Vol. 41, nr 4, s. 290-300Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Increasingly, focus has been directed towards the use of microorganisms as biological control agents to combat fungal disease, as an alternative to chemical fungicides. Pseudomonas fluorescens SBW25 is one bacterial strain that has been demonstrated to promote plant growth by biocontrol of pathogenic fungi. To understand the mode of action of this bacterium, information regarding its localization and metabolic activity on plants is important. In this study, a gfp/luxAB-tagged derivative of P. fluorescens SBW25, expressing the green fluorescent protein (GFP) and bacterial luciferase, was monitored during colonization of wheat starting from seed inoculation. Since bacterial luciferase is dependent on cellular energy reserves for phenotypic expression, metabolically active cells were detected using this marker. In contrast, the stable GFP fluorescence phenotype was used to detect the cells independently of their metabolic status. The combination of these two markers enabled P. fluorescens SBW25 cells to be monitored on wheat plants to determine their specific location and metabolic activity. Studies on homogenized wheat plant parts demonstrated that the seed was the preferred location of P. fluorescens SBW25 during the 65-day time period studied, but the leaves and roots were also colonized. Interestingly, the bacteria were also found to be metabolically active on all plant parts examined. In situ localization of P. fluorescens SBW25 using a combination of different microscopic techniques confirmed the preference for the cells to colonize specific regions of the seed. We speculate that the colonization pattern of P. fluorescens SBW25 can be linked to the mechanism of protection of plants from fungal infection.

1 - 3 of 3
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • harvard-anglia-ruskin-university
  • apa-old-doi-prefix.csl
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf