sh.sePublikasjoner
Endre søk
Begrens søket
1 - 5 of 5
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • harvard-anglia-ruskin-university
  • apa-old-doi-prefix.csl
  • sodertorns-hogskola-harvard.csl
  • sodertorns-hogskola-oxford.csl
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Bartish, Galyna
    et al.
    Södertörns högskola, Institutionen för livsvetenskaper. Stockholm University.
    Moradi, Hossein
    Södertörns högskola, Institutionen för livsvetenskaper. Stockholm University.
    Nygård, Odd
    Södertörns högskola, Institutionen för livsvetenskaper.
    Amino acids Thr56 and Thr58 are not essential for elongation factor 2 function in yeast2007Inngår i: The FEBS Journal, ISSN 1742-464X, E-ISSN 1742-4658, Vol. 274, nr 20, s. 5285-5297Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Yeast elongation factor 2 is an essential protein that contains two highly conserved threonine residues, T56 and T58, that could potentially be phosphorylated by the Rck2 kinase in response to environmental stress. The importance of residues T56 and T58 for elongation factor 2 function in yeast was studied using site directed mutagenesis and functional complementation. Mutations T56D, T56G, T56K, T56N and T56V resulted in nonfunctional elongation factor 2 whereas mutated factor carrying point mutations T56M, T56C, T56S, T58S and T58V was functional. Expression of mutants T56C, T56S and T58S was associated with reduced growth rate. The double mutants T56M/T58W and T56M/T58V were also functional but the latter mutant caused increased cell death and considerably reduced growth rate. The results suggest that the physiological role of T56 and T58 as phosphorylation targets is of little importance in yeast under standard growth conditions. Yeast cells expressing mutants T56C and T56S were less able to cope with environmental stress induced by increased growth temperatures. Similarly, cells expressing mutants T56M and T56M/T58W were less capable of adapting to increased osmolarity whereas cells expressing mutant T58V behaved normally. All mutants tested were retained their ability to bind to ribosomes in vivo. However, mutants T56D, T56G and T56K were under-represented on the ribosome, suggesting that these nonfunctional forms of elongation factor 2 were less capable of competing with wild-type elongation factor 2 in ribosome binding. The presence of nonfunctional but ribosome binding forms of elongation factor 2 did not affect the growth rate of yeast cells also expressing wild-type elongation factor 2.

  • 2.
    Beckman, Marie
    et al.
    Södertörns högskola, Institutionen för livsvetenskaper, Molekylärbiologi.
    Freeman, Craig
    Parish, Christopher R.
    Small, David H.
    Activation of cathepsin D by glycosaminoglycans2009Inngår i: The FEBS Journal, ISSN 1742-464X, E-ISSN 1742-4658, Vol. 276, nr 24, s. 7343-7352Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We have previously shown that heparin can increase the activity of the proenzyme form of Alzheimer's beta-site amyloid precursor protein cleaving enzyme 1 (BACE1). Cathepsin D (CD) is a member of the aspartic protease family and has sequence similarity to BACE1. Therefore, we examined whether heparin and other glycosaminoglycans (GAGs) can influence the activity of CD. Heparin and other GAGs were found to stimulate the activity of recombinant proCD. Desulfation of heparin almost abolished the stimulation, indicating that sulfate groups were important for the stimulatory effect. In addition, the stimulation was dependent on the length of the GAG chain, as larger GAGs were more potent in their ability to stimulate proCD than shorter fragments. In the presence of heparin, limited autocatalytic proteolysis of the proenzyme was increased, suggesting that heparin increases the activity of proCD by accelerating the conversion of proCD, which has little activity, to pseudoCD, an active form lacking residues 1-26 of the prodomain. Furthermore, the activity of spleen-derived mature CD, which lacks the entire 44 amino acid residue prodomain, was also increased by heparin, indicating that the catalytic domain of CD contains at least one region to which GAGs bind and stimulate enzyme activity. Because heparin also stimulated the activity of pseudoCD, proenzyme activation was probably accelerated by the interaction of heparin with the catalytic domain of pseudoCD. However, it is possible that heparin may also activate the proenzyme directly. On the basis of this study, we propose that GAGs may regulate CD activity in vivo.

  • 3.
    Ferreira, Monica E.
    et al.
    Södertörns högskola, Institutionen för livsvetenskaper, Molekylärbiologi. Karolinska instiutet.
    Prochasson, Philippe
     Stowers Institute for Medical Research, Kansas City, MO, USA.
    Berndt, Kurt D.
    Södertörns högskola, Institutionen för livsvetenskaper, Kemi. Karolinska institutet.
    Workman, Jerry L.
    Stowers Institute for Medical Research, Kansas City, MO, USA.
    Wright, Anthony P. H.
    Södertörns högskola, Institutionen för livsvetenskaper, Molekylärbiologi. Karolinska institutet.
    Activator-binding domains of the SWI/SNF chromatin remodeling complex characterized in vitro are required for its recruitment to promoters in vivo2009Inngår i: The FEBS Journal, ISSN 1742-464X, E-ISSN 1742-4658, Vol. 276, nr 9, s. 2557-2565Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Interaction between acidic activation domains and the activator-binding domains of Swi1 and Snf5 of the yeast SWI/SNF chromatin remodeling complex has previously been characterized in vitro. Although deletion of both activator-binding domains leads to phenotypes that differ from the wild-type, their relative importance for SWI/SNF recruitment to target genes has not been investigated. In the present study, we used chromatin immunoprecipitation assays to investigate the individual and collective importance of the activator-binding domains for SWI/SNF recruitment to genes within the GAL regulon in vivo. We also investigated the consequences of defective SWI/SNF recruitment for target gene activation. We demonstrate that deletion of both activator-binding domains essentially abolishes galactose-induced SWI/SNF recruitment and causes a reduction in transcriptional activation similar in magnitude to that associated with a complete loss of SWI/SNF activity. The activator-binding domains in Swi1 and Snf5 make approximately equal contributions to the recruitment of SWI/SNF to each of the genes studied. The requirement for SWI/SNF recruitment correlates with GAL genes that are highly and rapidly induced by galactose.

  • 4.
    Knutsson Jenvert, Rose-Marie
    et al.
    Södertörns högskola, Institutionen för livsvetenskaper. Stockholm University.
    Holmberg Schiavone, Lovisa
    Södertörns högskola, Institutionen för livsvetenskaper.
    Characterization of the tRNA and ribosome-dependent pppGpp-synthesis by recombinant stringent factor from Escherichia coli2005Inngår i: The FEBS Journal, ISSN 1742-464X, E-ISSN 1742-4658, Vol. 272, nr 3, s. 685-695Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Stringent factor is a ribosome-dependent ATP:GTP pyrophosphoryl transferase that synthesizes (p)ppGpp upon nutrient deprivation. It is activated by unacylated tRNA in the ribosomal amino-acyl site (A-site) but it is unclear how activation occurs. A His-tagged stringent factor was isolated by affinity-chromatography and precipitation. This procedure yielded a protein of high purity that displayed (a) a low endogenous pyrophosphoryl transferase activity that was inhibited by the antibiotic tetracycline; (b) a low ribosome-dependent activity that was inhibited by the A-site specific antibiotics thiostrepton, micrococcin, tetracycline and viomycin; (c) a tRNA- and ribosome-dependent activity amounting to 4500 pmol pppGpp per pmol stringent factor per minute. Footprinting analysis showed that stringent factor interacted with ribosomes that contained tRNAs bound in classical states. Maximal activity was seen when the ribosomal A-site was presaturated with unacylated tRNA. Less tRNA was required to reach maximal activity when stringent factor and unacylated tRNA were added simultaneously to ribosomes, suggesting that stringent factor formed a complex with tRNA in solution that had higher affinity for the ribosomal A-site. However, tRNA-saturation curves, performed at two different ribosome/stringent factor ratios and filter-binding assays, did not support this hypothesis.

  • 5. Lundström, Susanna L.
    et al.
    Twelkmeyer, Brigitte
    Sagemark, Malin K.
    Li, Jianjun
    Richards, James C.
    Hood, Derek W.
    Moxon, E. Richard
    Schweda, Elke K. H.
    Södertörns högskola, Institutionen för livsvetenskaper.
    Novel globoside-like oligosaccharide expression patterns in nontypeable Haemophilus influenzae lipopolysaccharide2007Inngår i: The FEBS Journal, ISSN 1742-464X, E-ISSN 1742-4658, Vol. 274, nr 18, s. 4886-4903Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We report the novel pattern of lipopolysaccharide (LPS) expressed by two disease-associated nontypeable Haemophilus influenzae strains, 1268 and 1200. The strains express the common structural motifs of H. influenzae; globotetraose [beta-D-GalpNAc-(1 -> 3)-alpha-D-Galp-(1 -> 4)-beta-D-Galp-(1 -> 4)-beta-d-Glcp] and its truncated versions globoside [alpha-D-Galp-(1 -> 4)-beta-D-Galp-(1 -> 4)-beta-D-Glcp] and lactose [beta-D-Galp-(1 -> 4)-beta-D-Glcp] linked to the terminal heptose (HepIII) and the corresponding structures with an alpha-D-Glcp as the reducing sugar linked to the middle heptose (HepII) in the same LPS molecule. Previously these motifs had been found linked only to either the proximal heptose (HepI) or HepIII of the triheptosyl inner-core moiety l-alpha-D-Hepp-(1 -> 2)-[PEtn -> 6]-l-alpha-D-Hepp-(1 -> 3)-l-alpha-D-Hepp-(1 -> 5)-[PPEtn -> 4]-alpha-Kdo-(2 -> 6)-lipid A. This novel finding was obtained by structural studies of LPS using NMR techniques and ESI-MS on O-deacylated LPS and core oligosaccharide material, as well as electrospray ionization-multiple-step tandem mass spectrometry on permethylated dephosphorylated oligosaccharide material. A lpsA mutant of strain 1268 expressed LPS of reduced complexity that facilitated unambiguous structural determination. Using capillary electrophoresis-ESI-MS/MS we identified sialylated glycoforms that included sialyllactose as an extension from HepII, this is a further novel finding for H. influenzae LPS. In addition, each LPS was found to carry phosphocholine and O-linked glycine. Nontypeable H. influenzae strain 1200 expressed identical LPS structures to 1268 with the difference that strain 1200 LPS had acetates substituting HepIII, whereas strain 1268 LPS has glycine at the same position.

1 - 5 of 5
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • harvard-anglia-ruskin-university
  • apa-old-doi-prefix.csl
  • sodertorns-hogskola-harvard.csl
  • sodertorns-hogskola-oxford.csl
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf