sh.sePublications
Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • harvard-anglia-ruskin-university
  • apa-old-doi-prefix.csl
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Bathmann, Ulrich
    et al.
    Leibniz-Institute for Baltic Sea Research, Warnemünde, Germany.
    Schubert, Hendrik
    University of Rostock, Rostock, Germany.
    Andrén, Elinor
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Tuomi, Laura
    Finnish Meteorological Institute, Helsinki, Finland.
    Radziejewska, Teresa
    University of Szczecin, Szczecin, Poland.
    Kulinski, Karol
    Institute of Oceanology of the Polish Academy of Sciences, Sopot, Poland.
    Chubarenko, Irina
    Shirshov Institute of Oceanology of the Russian Academy of Sciences, Moscow, Russia.
    Editorial: Living Along Gradients: Past, Present, Future2020In: Frontiers in Marine Science, E-ISSN 2296-7745, Vol. 6, article id 801Article in journal (Refereed)
    Abstract [en]

    The Baltic Sea is a geologically and evolutionarily young part of the coastal ocean that experienced, in its past, several severe environmental changes. In its present state, the Baltic Sea is characterized by both horizontal and vertical gradients of environmental conditions. As a huge estuary, it shows a west to east/south to north surface salinity gradient from 24 in Kattegat to nearly freshwater in the Bothnian Bay. The vertical salinity and oxygen gradients result in stratification which causes hypoxic and sulfidic anoxic conditions in deep basins. These gradient systems are impacted by natural and anthropogenic changes due to physico-chemical driving forces, varying over time and space. Gradient environments produce an imprint on both the structure and function of the biological systems and influence biogeochemical cycling. Besides, coastal seas in general and the Baltic Sea in particular, experience constant and direct influence from land with consequences to matter and energy cycles, biogeochemical interactions, energy fluxes, and sediment dynamics. “Living along gradients: past, present, future” in the Baltic are today’s very important aspects that rise questions like which of the effects we are detecting occur naturally, and which are driven by human activities. Deciphering past environmental changes and their causes provide keys to understand and simulate possible future scenarios, all of which should rise societal awareness and implementation of appropriate marine and coastal policies. Present-day knowledge on the dynamics of gradient systems, on the processes that affect the coastal sea environment, the results of interaction between coastal seas and society, the detection or reconstruction of past and present changes on time scales from inter-annual to millennial, and future change models are summarized here, with the idea to stimulate scientific exchange on most complex questions, addressing them from different perspectives.

  • 2.
    van Wirdum, Falkje
    et al.
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies.
    Andrén, Elinor
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Wienholz, D.
    University of Hamburg, Hamburg, Germany.
    Kotthoff, U.
    University of Hamburg, Hamburg, Germany.
    Moros, M.
    Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany.
    Fanget, A. -S
    University of Perpignan, Perpignan, France.
    Seidenkrantz, M. -S
    Aarhus University, Aarhus, Denmark.
    Andrén, Thomas
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Middle to late holocene variations in salinity and primary productivity in the central Baltic Sea: A multiproxy study from the landsort deep2019In: Frontiers in Marine Science, E-ISSN 2296-7745, Vol. 6, article id 51Article in journal (Refereed)
    Abstract [en]

    Anthropogenic forcing has led to an increased extent of hypoxic bottom areas in the Baltic Sea during recent decades. The Baltic Sea ecosystem is naturally prone to the development of hypoxic conditions due to its geographical, hydrographical, geological, and climate features. Besides the current spreading of hypoxia, the Baltic Sea has experienced two extensive periods of hypoxic conditions during the Holocene, caused by changing climate conditions during the Holocene Thermal Maximum (HTM; 8–4.8 cal ka BP) and the Medieval Climate Anomaly (MCA; 1–0.7 cal ka BP). We studied the variations in surface and bottom water salinity and primary productivity and their relative importance for the development and termination of hypoxia by using microfossil and geochemical data from a sediment core retrieved from the Landsort Deep during IODP Expedition 347 (Site M0063). Our findings demonstrate that increased salinity was of major importance for the development of hypoxic conditions during the HTM. In contrast, we could not clearly relate the termination of this hypoxic period to salinity changes. The reconstructed high primary productivity associated with the hypoxic period during the MCA is not accompanied by considerable increases in salinity. Our proxies for salinity show a decreasing trend before, during and after the MCA. Therefore, we suggest that this period of hypoxia is primarily driven by increasing temperatures due to the warmer climate. These results highlight the importance of natural climate driven changes in salinity and primary productivity for the development of hypoxia during a warming climate.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • harvard-anglia-ruskin-university
  • apa-old-doi-prefix.csl
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf