sh.sePublications
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • harvard-anglia-ruskin-university
  • apa-old-doi-prefix.csl
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Malik, Amer
    et al.
    KTH.
    Ogden, Sam
    Uppsala University.
    Amberg, Gustav
    KTH.
    Hjort, Klas
    Uppsala University /VTT Technical Research Center Finland, Espoo, Finland.
    Modeling and analysis of a phase change material thermohydraulic membrane microactuator2013In: Journal of microelectromechanical systems, ISSN 1057-7157, E-ISSN 1941-0158, Vol. 22, no 1, p. 186-194Article in journal (Refereed)
    Abstract [en]

    Presented in this work, is a Finite Element Method (FEM)-based model for phase change material actuators, modeling the active material as a fluid as opposed to a solid. This enables the model to better conform to localized loads, as well as offering the opportunity to follow material movement in enclosed volumes. Modeling, simulation and analysis of an electrothermally activated paraffin microactuator has been conducted. The paraffin microactuator used for the analysis in the current study exploits the large volumetric expansion of paraffin upon melting, which combined with its low compressibility in the liquid state allows for high hydraulic pressures to be generated. The purpose of the study is to supply a geometry independent model of such a microactuator through the implementation of a fluid model rather than a solid model, which has been utilized in previous studies. Numerical simulations are conducted at different frequencies of the heating source and for different geometries of the microactuator. The results are compared with the empirical data obtained on a close to identical paraffin microactuator, which clearly show the advantages of a fluid model instead of a solid state approximation.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • harvard-anglia-ruskin-university
  • apa-old-doi-prefix.csl
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf