sh.sePublications
Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • harvard-anglia-ruskin-university
  • apa-old-doi-prefix.csl
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Arnqvist, L
    et al.
    Dutta, P C
    Jonsson, Lisbeth
    Södertörn University, Avdelning Naturvetenskap.
    Sitbon, F
    Reduction of cholesterol and glycoalkaloid levels in transgenic potato plants by overexpression of a type 1 sterol methyltransferase cDNA2003In: Plant Physiology, ISSN 0032-0889, E-ISSN 1532-2548, Vol. 131, no 4, p. 1792-1799Article in journal (Refereed)
    Abstract [en]

    Transgenic potato (Solanum tuberosum cv Desiree) plants overexpressing a soybean (Glycine max) type 1 sterol methyltransferase (GmSMT1) cDNA were generated and used to study sterol biosynthesis in relation to the production of toxic glycoalkaloids. Transgenic plants displayed an increased total sterol level in both leaves and tubers, mainly due to increased levels of the 24-ethyl sterols isofucosterol and sitosterol. The higher total sterol level was due to increases in both free and esterified sterols. However, the level of free cholesterol, a nonalkylated sterol, was decreased. Associated with this was a decreased glycoalkaloid level in leaves and tubers, down to 41% and 63% of wild-type levels, respectively. The results show that glycoalkaloid biosynthesis can be down-regulated in transgenic potato plants by reducing the content of free nonalkylated sterols, and they support the view of cholesterol as a precursor in glycoalkaloid biosynthesis.

  • 2.
    Mukherjee, Krishanu
    et al.
    Södertörn University, School of Life Sciences.
    Bürglin, Thomas R
    Södertörn University, School of Life Sciences.
    MEKHLA, a novel domain with similarity to PAS domains, is fused to plant homeodomain-leucine zipper III proteins2006In: Plant Physiology, ISSN 0032-0889, E-ISSN 1532-2548, Vol. 140, no 4, p. 1142-1150Article in journal (Refereed)
    Abstract [en]

    Homeodomain (HD) proteins play important roles in the development of plants, fungi, and animals. Here we identify a novel domain, MEKHLA, in the C terminus of HD-Leu zipper (HD-ZIP) III plant HD proteins that shares similarity with a group of bacterial proteins and a protein from the green alga Chlamydomonas reinhardtii. The group of bacterial MEKHLA proteins is found in cyanobacteria and other bacteria often found associated with plants. Phylogenetic analysis suggests that a MEKHLA protein transferred, possibly from a cyanobacterium or an early chloroplast, into the nuclear genome of an early plant in a first step, and attached itself to the C terminus of an HD-ZIP IV homeobox gene in a second step. Further position-specific iterated-BLAST searches with the bacterial MEKHLA proteins revealed a subregion within the MEKHLA domain that shares significant similarity with the PAS domain. The PAS domain is a sensory module found in many proteins through all kingdoms of life. It is involved in light, oxygen, and redox potential sensation. The fact that HD-ZIP III proteins are transcription factors that have this sensory domain attached to their C terminus uncovers a potential new signaling pathway in plants.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • harvard-anglia-ruskin-university
  • apa-old-doi-prefix.csl
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf