sh.sePublications
Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • harvard-anglia-ruskin-university
  • apa-old-doi-prefix.csl
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Liu, Jiewei
    et al.
    KTH.
    Do-Quang, Minh
    KTH.
    Amberg, Gustav
    KTH.
    Numerical Simulation of Rapid Expansion of Supercritical Carbon Dioxide2015In: AIChE Journal, ISSN 0001-1541, E-ISSN 1547-5905, Vol. 61, no 1, p. 317-332Article in journal (Refereed)
    Abstract [en]

    Axisymmetric rapid expansion of supercritical carbon dioxide is investigated in this article. The extended generalized Bender equation of state is used to give a good description of the fluids over a wide range of pressure and temperature conditions. The locations of Mach disks are analyzed and compared with an experimental correlation for the case where there is no plate positioned in front of the nozzle exit. It is found that the disagreement between our numerical results and the experimental formula is very small when the pressure ratio is small, and increases as the pressure ratio increases. It is also found that with different equations of state, the predicted positions of Mach disks do not differ a lot, but the temperature profiles in the chamber differ a lot. The case where there is a plate positioned in front of the nozzle exit is also studied in this article. A universal similarity solution is obtained.

  • 2.
    Lövgren, Kristin
    Södertörn University College, School of Business Studies.
    Slakthusområdet: ett lågteknologiskt industriellt kluster2008Independent thesis Advanced level (degree of Magister), 10 points / 15 hpStudent thesis
  • 3.
    Malik, Amer
    et al.
    KTH.
    Ogden, Sam
    Uppsala University.
    Amberg, Gustav
    KTH.
    Hjort, Klas
    Uppsala University /VTT Technical Research Center Finland, Espoo, Finland.
    Modeling and analysis of a phase change material thermohydraulic membrane microactuator2013In: Journal of microelectromechanical systems, ISSN 1057-7157, E-ISSN 1941-0158, Vol. 22, no 1, p. 186-194Article in journal (Refereed)
    Abstract [en]

    Presented in this work, is a Finite Element Method (FEM)-based model for phase change material actuators, modeling the active material as a fluid as opposed to a solid. This enables the model to better conform to localized loads, as well as offering the opportunity to follow material movement in enclosed volumes. Modeling, simulation and analysis of an electrothermally activated paraffin microactuator has been conducted. The paraffin microactuator used for the analysis in the current study exploits the large volumetric expansion of paraffin upon melting, which combined with its low compressibility in the liquid state allows for high hydraulic pressures to be generated. The purpose of the study is to supply a geometry independent model of such a microactuator through the implementation of a fluid model rather than a solid model, which has been utilized in previous studies. Numerical simulations are conducted at different frequencies of the heating source and for different geometries of the microactuator. The results are compared with the empirical data obtained on a close to identical paraffin microactuator, which clearly show the advantages of a fluid model instead of a solid state approximation.

  • 4.
    Shiomi, Junichiro
    et al.
    University of Tokyo, Tokyo, Japan.
    Lin, Yuan
    KTH.
    Carlborg, Carl Fredrik
    KTH.
    Amberg, Gustav
    KTH.
    Maruyama, Shigeo
    University of Tokyo, Tokyo, Japan.
    Low dimensional heat and mass transport in carbon nanotubes2010In: Proceedings of the ASME Micro/Nanoscale Heat and Mass Transfer International Conference 2009, MNHMT2009, 2010, p. 337-346Conference paper (Refereed)
    Abstract [en]

    This report covers various issues related to heat and mass transport in carbon nanotubes. Heat and mass transport under quasi-one-dimensional confinement has been investigated using molecular dynamics simulations. It is shown that the quasi-ballistic heat conduction manifests in the length and diameter dependences of carbon nanotube thermal conductance. Such quasi-ballistic nature of carbon nanotube heat conduction also influences the thermal boundary conductance between carbon nanotubes and the surrounding materials. The quasi-one-dimensional structure also influences the mass transport of water through carbon nanotubes. The confinement gives rise to strongly directional dynamic properties of water. Here, it is demonstrated that the confined water can be efficiently transported by using the temperature gradient. Furthermore, the simulations reveal the diameter-dependent anisotropic dielectric properties, which could be used to identify intrusion of water into carbon nanotubes.

1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • harvard-anglia-ruskin-university
  • apa-old-doi-prefix.csl
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf