Change search
ReferencesLink to record
Permanent link

Direct link
Three-dimensional phase-field modeling of martensitic microstructure evolution in steels
Show others and affiliations
2012 (English)In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 60, no 4, 1538-1547 p.Article in journal (Refereed) PublishedText
Abstract [en]

In the present work a 3-D elastoplastic phase-field (PF) model is developed, based on the PF microelasticity theory proposed by A.G.Khachaturyan and by including plastic deformation as well as anisotropic elastic properties, for modeling the martensitic transformation (MT) by using the finite-element method. PF simulations in 3D are performed by considering different cases of MT occurring in an elastic material, with and without dilatation, and in an elastic perfectly plastic material with dilatation having isotropic as well as anisotropic elastic properties. As input data for the simulations the thermodynamic parameters corresponding to anFe–0.3%C alloy as well as the physical parameters corresponding to steels acquired from experimental results are considered. The simulation results clearly show auto-catalysis and morphological mirror image formation, which are some of the typical characteristics of a martensitic microstructure. The results indicate that elastic strain energy, anisotropic elastic properties, plasticity and the external clamping conditions affect MT as well as the microstructure.

Place, publisher, year, edition, pages
Elsevier , 2012. Vol. 60, no 4, 1538-1547 p.
Keyword [en]
Phase-field models, Martensitic phase transformation, Microstructure, Steels
National Category
Metallurgy and Metallic Materials
URN: urn:nbn:se:sh:diva-30199DOI: 10.1016/j.actamat.2011.11.039ISI: 000301989500010ScopusID: 2-s2.0-84856194252OAI: diva2:932507
Swedish e‐Science Research Center
Available from: 2012-01-20 Created: 2016-06-01 Last updated: 2016-06-01Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Amberg, Gustav
In the same journal
Acta Materialia
Metallurgy and Metallic Materials

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 18 hits
ReferencesLink to record
Permanent link

Direct link