sh.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Modeling and analysis of a phase change material thermohydraulic membrane microactuator
KTH.
Uppsala University.
Uppsala University /VTT Technical Research Center Finland, Espoo, Finland.
2013 (English)In: Journal of microelectromechanical systems, ISSN 1057-7157, E-ISSN 1941-0158, Vol. 22, no 1, 186-194 p.Article in journal (Refereed) Published
Resource type
Text
Abstract [en]

Presented in this work, is a Finite Element Method (FEM)-based model for phase change material actuators, modeling the active material as a fluid as opposed to a solid. This enables the model to better conform to localized loads, as well as offering the opportunity to follow material movement in enclosed volumes. Modeling, simulation and analysis of an electrothermally activated paraffin microactuator has been conducted. The paraffin microactuator used for the analysis in the current study exploits the large volumetric expansion of paraffin upon melting, which combined with its low compressibility in the liquid state allows for high hydraulic pressures to be generated. The purpose of the study is to supply a geometry independent model of such a microactuator through the implementation of a fluid model rather than a solid model, which has been utilized in previous studies. Numerical simulations are conducted at different frequencies of the heating source and for different geometries of the microactuator. The results are compared with the empirical data obtained on a close to identical paraffin microactuator, which clearly show the advantages of a fluid model instead of a solid state approximation.

Place, publisher, year, edition, pages
2013. Vol. 22, no 1, 186-194 p.
Keyword [en]
Finite element methods, fluid dynamics, microactuators, microelectromechanical devices, steel
National Category
Other Mechanical Engineering
Identifiers
URN: urn:nbn:se:sh:diva-30158DOI: 10.1109/JMEMS.2012.2222866ISI: 000314726900026Scopus ID: 2-s2.0-84873288511OAI: oai:DiVA.org:sh-30158DiVA: diva2:932485
Funder
Swedish Research Council
Available from: 2013-02-18 Created: 2016-06-01 Last updated: 2016-06-01Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Amberg, Gustav
In the same journal
Journal of microelectromechanical systems
Other Mechanical Engineering

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 19 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf