sh.sePublications
Change search
ReferencesLink to record
Permanent link

Direct link
c-Myc induces changes in higher order rDNA structure on stimulation of quiescent cells
Södertörn University, School of Life Sciences. Karolinska Institutet.
Södertörn University, School of Life Sciences. Karolinska Institutet.
Södertörn University, School of Life Sciences, Molecular biology. Karolinska Institutet.
2009 (English)In: Oncogene, ISSN 0950-9232, E-ISSN 1476-5594, Vol. 28, no 16, 1833-1842 p.Article in journal (Refereed) Published
Abstract [en]

c-Myc is an oncogenic transcription factor capable of activating transcription by all three nuclear RNA polymerases, thus acting as a high-level coordinator of protein synthesis capacity and cell growth rate. c-Myc recruits RNA polymerase I-related transcription factors to the rDNA when quiescent cells are stimulated to re-enter the cell cycle. Using a model system of cell lines with variable c-Myc status, we show that on stimulation c-Myc rapidly induces gene loop structures in rDNA chromatin that juxtapose upstream and downstream rDNA sequences. c-Myc activation is both necessary and sufficient for this change in rDNA chromatin conformation. c-Myc activation induces association of TTF-1 with the rDNA, and c-Myc is physically associated with induced rDNA gene loops. The origins of two or more rDNA gene loops are closely juxtaposed, suggesting the possibility that c-Myc induces nucleolar chromatin hubs. Induction of rDNA gene loops may be an early step in the reprogramming of quiescent cells as they re-enter the growth cycle.

Place, publisher, year, edition, pages
2009. Vol. 28, no 16, 1833-1842 p.
Keyword [en]
c-Myc, nucleolus, transcription, ribosome biogenesis, RNA polymerase I
National Category
Biochemistry and Molecular Biology Cell Biology
Identifiers
URN: urn:nbn:se:sh:diva-17673DOI: 10.1038/onc.2009.21ISI: 000265640500002PubMedID: 19270725ScopusID: 2-s2.0-67349121053OAI: oai:DiVA.org:sh-17673DiVA: diva2:577178
Available from: 2012-12-14 Created: 2012-12-14 Last updated: 2016-08-04Bibliographically approved
In thesis
1. Role of c-Myc in the regulation of rDNA transcription by RNA polymerase I
Open this publication in new window or tab >>Role of c-Myc in the regulation of rDNA transcription by RNA polymerase I
2010 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Ribosomal biogenesis and protein translation are finely coordinated with cell proliferation. All three RNA polymerases Pol I, II, and III are utilized for highly efficient and accurate ribosome production. The transcriptional activity of Pol I has been found to be a key determinant for ribosome biogenesis. As an immediate early gene, Myc can orchestrate the transcriptional activities of all RNA polymerases upon mitogenic stimulation. The direct roles of Myc-mediated Pol II & III transcription have been well studied, but that of Myc-mediated Pol I transcription remains unclear. Here we show that Myc with its obligatory partner Max colocalizes in nucleoli and Myc binds to ribosomal DNA, and that association of Myc to rDNA is followed by recruitment of the cofactor TRRAP which enhances histone acetylation. Using the ligand-activated MycE system, we also showed that c-Myc could activate Pol I transcription in the absence of Pol II transcription. Furthermore, using a model system of cell lines with variable Myc status, we showed that Myc rapidly induced gene loop structures in rDNA chromatin which juxtaposes upstream and downstream rDNA sequences. In addition, the origins of two or more rDNA gene loops are closely juxtaposed, suggesting the possibility that Myc induces nucleolar chromatin hubs. Next, we investigated the role of Myc in chromatin domain organization of rRNA genes and the compartmentalized distribution of nucleoli, and found that Myc mediated a spatial organization of mammalian rRNA genes into distinct chromatin loops by tethering to nucleolar matrix via their 5 and 3 nontranscribed spacer sequences. We found evidence that Myc corporated with co-activators to become a regulatory complex that governed the transcription of rRNA by orchestrating dynamic chromatin-loop architecture. Finally, we demonstrated that Myc plays a role in the overall structural integrity of the nucleolus and that Myc antagonized its antagonistic partner Mad1 programming the epigenetic status of rDNA chromatin. These changes are discussed in relation to current knowledge about nucleolar structure as well as the organization of chromosomes and transcription factories in nuclear regions outside the nucleolus.

Place, publisher, year, edition, pages
Stockholm: Karolinska Institutet, 2010. 59 p.
National Category
Biological Sciences
Identifiers
urn:nbn:se:sh:diva-30693 (URN)978-91-7409-948-5 (ISBN)
Supervisors
Available from: 2016-08-04 Created: 2016-08-04 Last updated: 2016-08-04Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMedScopus

Search in DiVA

By author/editor
Shiue, Chiounan NBerkson, Rachel G.Wright, Anthony P H
By organisation
School of Life SciencesMolecular biology
In the same journal
Oncogene
Biochemistry and Molecular BiologyCell Biology

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 40 hits
ReferencesLink to record
Permanent link

Direct link