sh.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • harvard-anglia-ruskin-university
  • apa-old-doi-prefix.csl
  • sodertorns-hogskola-harvard.csl
  • sodertorns-hogskola-oxford.csl
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The chloroplast lumen and stromal proteomes of Arabidopsis thaliana show differential sensitivity to short- and long-term exposure to low temperature
Umeå universitet / Université des Sciences et Technologies de Lille 1, France.
Södertörn University, School of Life Sciences. Karolinska Institutet.
Umeå universitet.
Umeå universitet.
Show others and affiliations
2006 (English)In: The Plant Journal, ISSN 0960-7412, E-ISSN 1365-313X, Vol. 47, no 5, p. 720-734Article in journal (Refereed) Published
Abstract [en]

Cold acclimation and over-wintering by herbaceous plants are energetically expensive and are dependent on functional plastid metabolism. To understand how the stroma and the lumen proteomes adapt to low temperatures, we have taken a proteomic approach (difference gel electrophoresis) to identify proteins that changed in abundance in Arabidopsis chloroplasts during cold shock (1 day), and short- (10 days) and long-term (40 days) acclimation to 5 degrees C. We show that cold shock (1 day) results in minimal change in the plastid proteomes, while short-term (10 days) acclimation results in major changes in the stromal but few changes in the lumen proteome. Long-term acclimation (40 days) results in modulation of the proteomes of both compartments, with new proteins appearing in the lumen and further modulations in protein abundance occurring in the stroma. We identify 43 differentially displayed proteins that participate in photosynthesis, other plastid metabolic functions, hormone biosynthesis and stress sensing and signal transduction. These findings not only provide new insights into the cold response and acclimation of Arabidopsis, but also demonstrate the importance of studying changes in protein abundance within the relevant cellular compartment.

Place, publisher, year, edition, pages
2006. Vol. 47, no 5, p. 720-734
National Category
Biological Sciences
Identifiers
URN: urn:nbn:se:sh:diva-14282DOI: 10.1111/j.1365-313X.2006.02821.xISI: 000239700000006PubMedID: 16923014Scopus ID: 2-s2.0-33747046042OAI: oai:DiVA.org:sh-14282DiVA, id: diva2:468674
Note

Som manuskript i avhandling. As manuscript in dissertation.

Available from: 2011-12-21 Created: 2011-12-20 Last updated: 2017-12-08Bibliographically approved
In thesis
1. The chloroplast lumen proteome of Arabidopsis thaliana
Open this publication in new window or tab >>The chloroplast lumen proteome of Arabidopsis thaliana
2006 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In plants, the chloroplast organelles host the photosynthetic machinery, which catalyzes the conversion of light energy to chemical energy used for synthesis of carbohydrates. Inside the chloroplast, the lumen compartment forms an integral part of the thylakoid network that performs the light reactions of photosynthesis. Despite intensive research within the field of photosynthesis, the lumen located proteins were relatively unexplored. To get insight into the lumen proteins and their roles in photosynthesis this thesis aimed at characterising the chloroplast lumen proteome. A 2-dimensional protein map of the lumen proteome of Arabidopsis thaliana revealed a high protein content within this chloroplast compartment. Thirty-eight proteins were experimentally identified demonstrating that the chloroplast lumen contains it own specific proteome. Comparison of the Arabidopsis chloroplast lumen proteome with the spinach lumen proteome showed good correlation and demonstrated that Arabidopsis can serve as a model for characterising the lumen proteins. An in silico determination of the chloroplast lumen proteome from the Arabidopsis genome sequence data showed that the experimentally identified proteins are good representatives of the proteome. Combining the in silico proteome with the experimental proteome, the chloroplast lumen estimates to contain at least 80 different proteins. The putative ascorbate peroxidase TL29 detected in the thylakoid lumen was biochemically characterised. The protein associated to the PSII-enriched grana membrane fraction by electrostatic forces and accumulated upon high light illumination. Functional analysis showed that the TL29 protein is not a peroxidase but was able to bind ascorbate and may be involved in regulating the ascorbate levels in the chloroplast lumen. The dynamics of the lumen proteome were studied during the cold acclimation process. The lumen proteome was relatively insensitive to cold stress but important changes to the proteome were observed in the long-term developmental response to cold. These included changes in abundance of the different isoforms of the extrinsic PSII subunits, the PSII assembly factor Hcf136 and immunophilins. In comparison, the stroma proteome responded at an earlier stage in the acclimation process. Changes to the stroma proteome involved proteins related to photosynthesis, other plastid metabolism, hormone biosynthesis, and stress & signal transduction.

Place, publisher, year, edition, pages
Stockholm: Karolinska instiutet, 2006. p. 55
National Category
Biological Sciences
Identifiers
urn:nbn:se:sh:diva-31996 (URN)91-7140-654-9 (ISBN)
Public defence
2006-05-24, MA648, Alfred Nobels allé 7, Huddinge, 10:00 (English)
Opponent
Supervisors
Available from: 2017-02-08 Created: 2017-02-08 Last updated: 2017-02-08Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Schubert, MariaSchröder, Wolfgang P

Search in DiVA

By author/editor
Schubert, MariaSchröder, Wolfgang P
By organisation
School of Life Sciences
In the same journal
The Plant Journal
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 136 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • harvard-anglia-ruskin-university
  • apa-old-doi-prefix.csl
  • sodertorns-hogskola-harvard.csl
  • sodertorns-hogskola-oxford.csl
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf