sh.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • harvard-anglia-ruskin-university
  • apa-old-doi-prefix.csl
  • sodertorns-hogskola-harvard.csl
  • sodertorns-hogskola-oxford.csl
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The hedgehog-related gene qua-1 is required for molting in Caenorhabditis elegans
Show others and affiliations
2006 (English)In: Developmental Dynamics, ISSN 1058-8388, E-ISSN 1097-0177, Vol. 235, no 6, p. 1469-1481Article in journal (Refereed) Published
Abstract [en]

The Caenorhabditis elegans genome encodes ten proteins that share similarity with Hedgehog through the C-terminal Hint/Hog domain. While most genes are members of larger gene families, qua-1 is a single copy gene. Here we show that orthologs of qua-1 exist in many nematodes, including Brugia malayi, which shared a common ancestor with C. elegans about 300 million years ago. The QUA-1 proteins contain an N-terminal domain, the Qua domain, that is highly conserved, but whose molecular function is not known. We have studied the expression pattern of qua-1 in C. elegans using a qua-1::GFP transcriptional fusion. qua-1 is mainly expressed in hyp1 to hyp11 hypodermal cells, but not in seam cells. It is also expressed in intestinal and rectal cells, sensilla support cells, and the P cell lineage in L1. The expression of qua-1::GFP undergoes cyclical changes during development in phase with the molting cycle. It accumulates prior to molting and disappears between molts. Disruption of the qua-1 gene function through an internal deletion that causes a frame shift with premature stop in the middle of the gene results in strong lethality. The animals arrest in the early larval stages due to defects in molting. Electron microscopy reveals double cuticles due to defective ecdysis, but no obvious defects are seen in the hypodermis. Qua domain-only::GFP and full-length QUA-1::GFP fusion constructs are secreted and associated with the overlying cuticle, but only QUA-1::GFP rescues the mutant phenotype. Our results suggest that both the Hint/Hog domain and Qua domain are critically required for the function of QUA-1.

Place, publisher, year, edition, pages
2006. Vol. 235, no 6, p. 1469-1481
National Category
Developmental Biology
Identifiers
URN: urn:nbn:se:sh:diva-14296DOI: 10.1002/dvdy.20721ISI: 000237817200002PubMedID: 16502424Scopus ID: 2-s2.0-33646868856OAI: oai:DiVA.org:sh-14296DiVA, id: diva2:468167
Available from: 2011-12-20 Created: 2011-12-20 Last updated: 2017-12-08Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Bürglin, Thomas R.

Search in DiVA

By author/editor
Bürglin, Thomas R.
By organisation
School of Life Sciences
In the same journal
Developmental Dynamics
Developmental Biology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 138 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • harvard-anglia-ruskin-university
  • apa-old-doi-prefix.csl
  • sodertorns-hogskola-harvard.csl
  • sodertorns-hogskola-oxford.csl
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf