sh.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Structural analysis of lipopolysaccharides from Haemophilus influenzae serotype f - Structural diversity observed in three strains
Södertörn University, School of Life Sciences. Karolinska Institutet.
University of Oxford, John Radcliffe Hostpital, Oxford, UK.
University of Oxford, John Radcliffe Hostpital, Oxford, UK.
Södertörn University, School of Life Sciences. Karolinska Institutet.
2003 (English)In: European Journal of Biochemistry, ISSN 0014-2956, E-ISSN 1432-1033, Vol. 270, no 15, 3153-3167 p.Article in journal (Refereed) Published
Abstract [en]

Structural elucidation of the lipopolysaccharide (LPS) from three serotype f Haemophilus influenzae clinical isolates RM6255, RM7290 and RM6252 has been achieved using NMR spectroscopy techniques and ESI-MS on O-deacylated LPS and core oligosaccharide material (OS) as well as ESI-MSn on permethylated dephosphorylated OS. This is the first study to report structural details on LPS from serotype f strains. We found that the LPSs of all strains were highly heterogeneous mixtures of glycoforms expressing the common H. influenzae structural element l-alpha-d-Hepp -(1-->2)-[P Etn-->6]-l-alpha-d-Hepp -(1-->3)-[beta-d-Glcp -(1-->4)]-l-alpha-d-Hepp -(1-->5)-[PP Etn-->4]-alpha-Kdo-(2-->6)-lipid A with variable length of OS chains linked to each of the heptoses. The terminal heptose (HepIII) in RM6255 is substituted at the O-3 position by a beta-d-Glcp residue whereas HepIII in strains RM7290 and RM6252 is substituted at O-2 by the globoside unit (alpha-d-Galp -(1-->4)-beta-d-Galp -(1-->4)-beta-d-Glc) or truncated versions thereof. The central heptose (HepII) is substituted by an alpha-d-Galp -(1-->4)-beta-d-Galp -(1-->4)-beta-d-Glcp -(1-->4)-alpha-d-Glcp unit in RM7290 and RM6252 or truncated versions thereof. Strain RM6255 does not express galactose in its LPS and only shows a cellobiose unit elongating from HepII (beta-d-Glcp -(1-->4)-alpha-d-Glcp ). ESI-MSn on dephosphorylated and permethylated OS provided information on the existence of additional minor isomeric glycoforms.

Place, publisher, year, edition, pages
2003. Vol. 270, no 15, 3153-3167 p.
Keyword [en]
Haemophilus influenzae, lipopolysaccharide, NMR, ESI-MS
National Category
Biological Sciences
Identifiers
URN: urn:nbn:se:sh:diva-31884DOI: 10.1046/j.1432-1033.2003.03693.xISI: 000184267300005PubMedID: 12869190OAI: oai:DiVA.org:sh-31884DiVA: diva2:1069213
Available from: 2017-01-27 Created: 2017-01-27 Last updated: 2017-01-27Bibliographically approved
In thesis
1. Structural diversity of the lipid A and core oligosaccharide moieties of the lipopolysaccharides from nontypeable and serotype f Haemophilus influenzae
Open this publication in new window or tab >>Structural diversity of the lipid A and core oligosaccharide moieties of the lipopolysaccharides from nontypeable and serotype f Haemophilus influenzae
2005 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis describes structural studies of the oligosaccharide and lipid A moieties of lipopolysaccharides (LPSs) isolated from disease-causing Haemophilus influenzae strains. The nontypeable strains were clinical isolates from the middle ear of children suffering from otitis media and the serotype f strains had been collected from three adults with respiratory tract infections. The LPS molecules are situated on the cell wall of H. influenzae strains and they play a very important role in colonization, infection, evasion of host immune system and inflammatory response. Previous studies have implicated the heterogeneous repertoire of LPS structures within a strain and mimicry of human cell wall structures to be involved in the diseasecausing behavior of this organism. Structural analysis of the oligosaccharide moieties with advanced applications of nuclear magnetic resonance (NMR) and various electrospray ionization mass spectrometry (ESI-MS) techniques revealed novel structural features in each of the investigated strains. All of the strains displayed a very complex mixture of LPS structures that differed between and within the pathogens. Moreover, all of the strains had the capacity to express mimics of human glycolipids. The genetic basis for LPS biosynthesis for H. influenzae is established for the strain of which the complete genome has been determined. In this thesis the function of the genes involved in the biosynthesis of LPS was investigated in a nontypeable strain by using the combination of genetic engineering and structural analysis. The synergy of genomics and analytical carbohydrate chemistry led to the identification of novel structural epitopes, and furthermore, enabled us to identify a new function for one of these genes. The most recent structural study of lipid A from H. influenzae was conducted in 1988 on a mutant strain. The results of that study established the presence of only one lipid A structure. in this thesis we investigated lipid A from both nontypeable and serotype wild type strains by performing tandem ESI-MS and the results confirmed earlier findings but also evidenced other lipid A structures previously not associated with H. influenzae. Moreover, all of the strains exhibited a heterogeneous population of lipid A molecules.

Place, publisher, year, edition, pages
Stockholm: Karolinska instiutet, 2005. 60 p.
National Category
Biological Sciences
Identifiers
urn:nbn:se:sh:diva-31887 (URN)91-7140-504-6 (ISBN)
Public defence
2005-11-25, 4U Solen, Alfred Nobels allé 8, Huddinge, 09:00 (English)
Opponent
Supervisors
Available from: 2017-01-27 Created: 2017-01-27 Last updated: 2017-01-27Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Yildirim, Håkan H.Schweda, Elke K. H.
By organisation
School of Life Sciences
In the same journal
European Journal of Biochemistry
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 3 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf