Change search
ReferencesLink to record
Permanent link

Direct link
A Holocene History Of Dynamic Water Column Redox Conditions In The Landsort Deep, Baltic Sea
University of California-Riverside, Riverside California, USA .
Oklahoma State University, Stillwater, Oklahoma, USA .
Yale University, New Haven, Connecticut, USA.
Yale University, New Haven, Connecticut, USA.
Show others and affiliations
2016 (English)In: American Journal of Science, ISSN 0002-9599, E-ISSN 1945-452X, Vol. 316, no 8, 713-745 p.Article in journal (Refereed) Published
Abstract [en]

The modern Baltic Sea is the world's largest anthropogenically forced anoxic basin. Using integrated geochemical records collected during Integrated Ocean Drilling Program (IODP) Expedition 347 from the deepest and one of the most reducing sub-basins in the Baltic Sea, Landsort Deep, we explore the degree and frequency of natural anoxia through the Baltic Holocene. A marked decrease in carbon-to-sulfur ratios (C/S) from the cores indicate the transition from the Baltic Ice Lake to the current brackish sea, which occurred about 8.5 kyrs B.P. Following this, laminations throughout sediments recording brackish deposition suggest sustained anoxia or extreme low oxygen, while high molybdenum (Mo) concentrations of >100 ppm and iron (Fe) geochemistry suggest water column sulfide accumulation, or euxinia, that persisted beyond seasonal timescales during deposition of two distinct sapropel units. Sedimentary Mo isotope values range from +1.11 to -0.50 permil, which are distinctly fractionated from modern Baltic seawater (+2.26 to -2.67 parts per thousand) and thus indicate that each of the sapropels experienced only weak and/or oscillatory euxinia-in contrast to the more stable euxinic conditions of more restricted basins. A shift in delta Mo-98 starting above the lower sapropel to a distinctly more negative range suggests particularly weak and oscillatory euxinia, with an enhanced contribution of manganese (Mn) redox cycling to Mo deposition relative to the lower portion of the profile. This conclusion is supported by extreme sedimentary Mn enrichments of up to 15 weight percent. We interpret the combined data to indicate episodic but major Baltic inflow events of saline and oxygenated North Sea water into the anoxic Landsort Deep that limited the concentrations and residence time of water column sulfide and caused episodic oxide deposition. Considering the temporal overlap between the most reducing conditions and periods of redox instability, we hypothesize that major Baltic inflows, as is observed today, lead to short-term instability while simultaneously supporting longer-term Baltic anoxia by strengthening the halocline. Ultimately, our results indicate that periods more reducing than the modern Baltic Sea have occurred naturally over the Holocene, but the characteristic dynamic saline inputs have historically prevented the relatively more widespread and stable anoxia observed in other classic restricted basins and will likely continue to do so.

Place, publisher, year, edition, pages
2016. Vol. 316, no 8, 713-745 p.
Keyword [en]
IODP Expedition 347, Baltic Sea, Landsort Deep, paleoredox, molybdenum isotopes
National Category
Environmental Sciences
Research subject
Baltic and East European studies
URN: urn:nbn:se:sh:diva-31074DOI: 10.2475/08.2016.01ISI: 000384939300001ScopusID: 2-s2.0-84990239020OAI: diva2:1044504
Available from: 2016-11-03 Created: 2016-11-03 Last updated: 2016-11-03Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Andrén, Thomas
By organisation
Environmental Science
In the same journal
American Journal of Science
Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 72 hits
ReferencesLink to record
Permanent link

Direct link