sh.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • harvard-anglia-ruskin-university
  • apa-old-doi-prefix.csl
  • sodertorns-hogskola-harvard.csl
  • sodertorns-hogskola-oxford.csl
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Nucleolar organization, growth control and cancer
Karolinska Institutet.
Karolinska Institutet.
Karolinska Institutet.ORCID iD: 0000-0003-1029-9969
2010 (English)In: Epigenetics, ISSN 1559-2294, E-ISSN 1559-2308, Vol. 5, no 3, p. 200-205Article in journal (Refereed) Published
Abstract [en]

The nucleolus is a dynamic region of the nucleus that is disassembled and reformed each cell cycle and whose size is correlated with cell growth rate. Nucleolar size is a prognostic measure of cancer disease severity and increasing evidence suggests a causative role of nucleolar lesions in many cancers. In recent work (Shiue et al. Oncogene 28, 1833-42, 2009) we showed that the c-Myc oncoprotein induces changes in the higher order structure of rDNA chromatin in the nucleolus of growth stimulated quiescent rat cells. Here we show that c-Myc induces similar changes in human cells, that c-Myc plays a role in the overall structural integrity of the nucleolus and that c-Myc and its antagonistic partner Mad1 interact to program the epigenetic status of rDNA chromatin. These changes are discussed in relation to current knowledge about nucleolar structure as well as the organization of chromosomes and transcription factories in nuclear regions outside the nucleolus.

Place, publisher, year, edition, pages
2010. Vol. 5, no 3, p. 200-205
National Category
Biological Sciences
Identifiers
URN: urn:nbn:se:sh:diva-30691DOI: 10.4161/epi.5.3.11376ISI: 000276196400006PubMedID: 20305389Scopus ID: 2-s2.0-77954672013OAI: oai:DiVA.org:sh-30691DiVA, id: diva2:950996
Funder
The Foundation for Baltic and East European StudiesSwedish Research CouncilSwedish Cancer SocietyAvailable from: 2016-08-04 Created: 2016-08-04 Last updated: 2017-11-28Bibliographically approved
In thesis
1. Role of c-Myc in the regulation of rDNA transcription by RNA polymerase I
Open this publication in new window or tab >>Role of c-Myc in the regulation of rDNA transcription by RNA polymerase I
2010 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Ribosomal biogenesis and protein translation are finely coordinated with cell proliferation. All three RNA polymerases Pol I, II, and III are utilized for highly efficient and accurate ribosome production. The transcriptional activity of Pol I has been found to be a key determinant for ribosome biogenesis. As an immediate early gene, Myc can orchestrate the transcriptional activities of all RNA polymerases upon mitogenic stimulation. The direct roles of Myc-mediated Pol II & III transcription have been well studied, but that of Myc-mediated Pol I transcription remains unclear. Here we show that Myc with its obligatory partner Max colocalizes in nucleoli and Myc binds to ribosomal DNA, and that association of Myc to rDNA is followed by recruitment of the cofactor TRRAP which enhances histone acetylation. Using the ligand-activated MycE system, we also showed that c-Myc could activate Pol I transcription in the absence of Pol II transcription. Furthermore, using a model system of cell lines with variable Myc status, we showed that Myc rapidly induced gene loop structures in rDNA chromatin which juxtaposes upstream and downstream rDNA sequences. In addition, the origins of two or more rDNA gene loops are closely juxtaposed, suggesting the possibility that Myc induces nucleolar chromatin hubs. Next, we investigated the role of Myc in chromatin domain organization of rRNA genes and the compartmentalized distribution of nucleoli, and found that Myc mediated a spatial organization of mammalian rRNA genes into distinct chromatin loops by tethering to nucleolar matrix via their 5 and 3 nontranscribed spacer sequences. We found evidence that Myc corporated with co-activators to become a regulatory complex that governed the transcription of rRNA by orchestrating dynamic chromatin-loop architecture. Finally, we demonstrated that Myc plays a role in the overall structural integrity of the nucleolus and that Myc antagonized its antagonistic partner Mad1 programming the epigenetic status of rDNA chromatin. These changes are discussed in relation to current knowledge about nucleolar structure as well as the organization of chromosomes and transcription factories in nuclear regions outside the nucleolus.

Place, publisher, year, edition, pages
Stockholm: Karolinska Institutet, 2010. p. 59
National Category
Biological Sciences
Identifiers
urn:nbn:se:sh:diva-30693 (URN)978-91-7409-948-5 (ISBN)
Supervisors
Available from: 2016-08-04 Created: 2016-08-04 Last updated: 2016-08-04Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Shiue, Chiou-NanArabi, AzadehWright, Anthony P H

Search in DiVA

By author/editor
Shiue, Chiou-NanArabi, AzadehWright, Anthony P H
In the same journal
Epigenetics
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 100 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • harvard-anglia-ruskin-university
  • apa-old-doi-prefix.csl
  • sodertorns-hogskola-harvard.csl
  • sodertorns-hogskola-oxford.csl
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf