Abstract—Uncontrolled growth of sea urchin populations may have a negative effect on coral reefs, making them barren. To avoid this, different methods of sea urchin reduction have been developed but, without knowledge of their genetic structure and connectivity, these methods may be ineffective. The aim of this study was to examine the fine-scale genetic structure and connectivity in the sea urchin, Diadema setosum, population around Unguja, Zanzibar, using AFLP. We found evidence of different genetic clusters, high migration between the sites and high genetic diversity within the sites. These findings indicate that a manual reduction of sea urchins with similar genetic connectivity, implemented on the same geographic scale as our study, would be ineffective since sites are probably repopulated from many sources.