sh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • harvard-anglia-ruskin-university
  • apa-old-doi-prefix.csl
  • sodertorns-hogskola-harvard.csl
  • sodertorns-hogskola-oxford.csl
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Monitoring of antibiotic-induced alterations in the human intestinal microflora and detection of probiotic strains by use of terminal restriction fragment length polymorphism
Södertörns högskola, Institutionen för kemi, biologi, geografi och miljövetenskap. Karolinska Institute.
Karolinska Institute.
Södertörns högskola, Institutionen för kemi, biologi, geografi och miljövetenskap. Karolinska Institute.
Swedish University of Agricultural Sciences.
2005 (engelsk)Inngår i: Applied and Environmental Microbiology, ISSN 0099-2240, E-ISSN 1098-5336, Vol. 71, nr 1, s. 501-506Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Terminal restriction fragment length polymorphism (T-RFLP) was investigated as a tool for monitoring the human intestinal microflora during antibiotic treatment and during ingestion of a probiotic product. Fecal samples from eight healthy volunteers were taken before, during, and after administration of clindamycin. During treatment, four subjects were given a probiotic, and four subjects were given a placebo. Changes in the microbial intestinal community composition and relative abundance of specific microbial populations in each subject were monitored by using viable counts and T-RFLP fingerprints. T-RFLP was also used to monitor specific bacterial populations that were either positively or negatively affected by clindamycin. Some dominant bacterial groups, such as Eubacterium spp., were easily monitored by T-RFLP, while they were hard to recover by cultivation. Furthermore, the two probiotic Lactobacillus strains were easily tracked by T-RFLP and were shown to be the dominant Lactobacillus community members in the intestinal microflora of subjects who received the probiotic.

sted, utgiver, år, opplag, sider
2005. Vol. 71, nr 1, s. 501-506
HSV kategori
Identifikatorer
URN: urn:nbn:se:sh:diva-17365DOI: 10.1128/AEM.71.1.501-506.2005ISI: 000226458800062PubMedID: 15640226Scopus ID: 2-s2.0-12244292700OAI: oai:DiVA.org:sh-17365DiVA, id: diva2:571325
Tilgjengelig fra: 2012-11-22 Laget: 2012-11-19 Sist oppdatert: 2017-07-19bibliografisk kontrollert
Inngår i avhandling
1. Use of microbiomics to study human impacts on complex microbial communities
Åpne denne publikasjonen i ny fane eller vindu >>Use of microbiomics to study human impacts on complex microbial communities
2006 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

The study of bacterial communities in nature is currently a challenge. The majority of bacteria in clinical and environmental samples have not yet been cultured and therefore we cannot fully understand their roles in nature and how the ecological balance in a specific microbial ecosystem can be disrupted. For example, exposure to pollutants in soil and antibiotics in the human gut can have large consequences on microbial populations but the magnitude of these impacts is difficult to assess. In this thesis, a combination of molecular techniques, microbiomics, were used to assess complex microbial communities in soil and the human gut. One goal of this thesis was to study the impact of the toxic compound, 4-chlorophenol, on the soil microbiota. In addition, a specific 4-chlorophenol degrading bacterium, Arthrobacter chlorophenolicus, was monitored in soil. In order to monitor the cells they were chromosomally tagged with marker genes encoding either the green fluorescent protein (the gfp gene) or firefly luciferase (the luc gene). During degradation of high levels of 4-chlorophenol in soil, total cells counts of A. chlorophenolicus cells could be measured by flow cytometry (GFP protein) and the metabolic activity could be measured by lurninometry (luciferase activity). In addition, the relative abundance of A. chlorophenolicus in soil could be measured by terminal restriction fragment length polymorphism (T-RFLP) and a higher relative abundance was detected in soil contaminated with 4chlorophenol compared with non-treated soil. The impacts of 4-chlorophenol and A. chlorophenolicus on the dominant members of the soil microbiota were also assessed by T-RFLP. Another goal of this thesis was to study the impact of a short term antibiotic administration in a long term perspective, using either clindamycin, in a two year study or a triple therapy for eradication of Helicobacter pylori containing clarithromycin and metronidazole, in a four year study, on the human fecal microbiota. Both the total bacterial community and specific populations, i.e. Bacteroides spp. and Enterococcus spp., were monitored by T-RFLP. The Bacteroides populations never returned to their pre-treatment composition after clindamycin exposure during the two year study period. Selection and persistence of resistant Bacteroides clones up to two years after treatment was furthermore detected. In the four year study, Enterococcus populations increased as a response to the clarithromycin and metronidazole treatment. An increase in the levels of antibiotic resistance genes, specific erm genes, conferring resistance to macrolides and lincosamides were detected for up to 2 and 4 years after both types of antibiotic treatments in the respective studies. It was also possible to specifically monitor two probiotic Lactobacillus strains and their transient colonization by T-RFLP. In conclusion, the use of a polyphasic approach with complementary analytical tools made it possible to obtain a comprehensive picture of complex microbial communities. In addition, specific bacteria of interest in complex soil and fecal samples could be monitored using microbiomics approaches.

sted, utgiver, år, opplag, sider
Stockholm: Karolinska instiutet, 2006. s. 37
HSV kategori
Identifikatorer
urn:nbn:se:sh:diva-31990 (URN)91-7140-960-2 (ISBN)
Disputas
2006-12-15, MB416, Alfred Nobels allé 7, Huddinge, 10:00 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2017-02-08 Laget: 2017-02-08 Sist oppdatert: 2017-02-08bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMedScopusPMC Full text

Person

Jernberg, CeciliaEdlund, CharlottaJansson, J K

Søk i DiVA

Av forfatter/redaktør
Jernberg, CeciliaEdlund, CharlottaJansson, J K
Av organisasjonen
I samme tidsskrift
Applied and Environmental Microbiology

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 280 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • harvard-anglia-ruskin-university
  • apa-old-doi-prefix.csl
  • sodertorns-hogskola-harvard.csl
  • sodertorns-hogskola-oxford.csl
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf