sh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • harvard-anglia-ruskin-university
  • apa-old-doi-prefix.csl
  • sodertorns-hogskola-harvard.csl
  • sodertorns-hogskola-oxford.csl
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Changes in active bacterial communities before and after dredging of highly polluted Baltic Sea sediments
Södertörns högskola, Institutionen för livsvetenskaper. SLU.
SLU.
2006 (engelsk)Inngår i: Applied and Environmental Microbiology, ISSN 0099-2240, E-ISSN 1098-5336, Vol. 72, nr 10, s. 6800-6807Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Bacteria residing in sediments have key functions in the marine food web. However, it has been difficult to correlate the identity and activity of bacteria in sediments due to lack of appropriate methods beyond cultivation-based techniques. Our aim was to use a combination of molecular approaches, bromodeoxyuridine incorporation and immunocapture, terminal restriction fragment length polymorphism, and cloning and sequencing of 16S rRNA genes to assess the composition of growing bacteria in Baltic Sea sediments. The study site was a highly polluted area off the Swedish coast. The sediments were sampled in two consecutive years, before and after remediation, by dredging of the top sediments. Levels of polyaromatic hydrocarbons (PAHs), mercury, and polychlorinated biphenyls were dramatically reduced as a result of the cleanup project. The compositions of growing members of the communities were significantly different at the two sampling periods. In particular, members from the class Deltaproteobacteria and genus Spirochaeta were more dominant before dredging, but members of the classes Gammaproteobacteria and the Flavobacteria represented the most dominant growing populations after dredging. We also cultivated isolates from the polluted sediments that could transform the model PAH compound, phenanthrene. Some of these isolates were confirmed as dominant growing populations by the molecular methods as well. This suite of methods enabled us to link the identity and activity of the members of the sediment communities.

sted, utgiver, år, opplag, sider
2006. Vol. 72, nr 10, s. 6800-6807
HSV kategori
Identifikatorer
URN: urn:nbn:se:sh:diva-14278DOI: 10.1128/AEM.00971-06ISI: 000241170300047PubMedID: 16950911Scopus ID: 2-s2.0-33750091933OAI: oai:DiVA.org:sh-14278DiVA, id: diva2:468701
Tilgjengelig fra: 2011-12-21 Laget: 2011-12-20 Sist oppdatert: 2017-07-19bibliografisk kontrollert
Inngår i avhandling
1. Microbial diversity in Baltic Sea sediments
Åpne denne publikasjonen i ny fane eller vindu >>Microbial diversity in Baltic Sea sediments
2007 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

This thesis focuses on microbial community structures and their functions in Baltic Sea sediments. First we investigated the distribution of archaea and bacteria in Baltic Sea sediments along a eutrophication gradient. Community profile analysis of 16S rRNA genes using terminal restriction length polymorphism (T-RFLP) indicated that archaeal and bacterial communities were spatially heterogeneous. By employing statistical ordination methods we observed that archaea and bacteria were structured and impacted differently by environmental parameters that were significantly linked to eutrophication. In a separate study, we analyzed bacterial communities at a different site in the Baltic Sea that was heavily contaminated with polyaromatic hydrocarbons (PAHs) and several other pollutants. Sediment samples were collected before and after remediation by dredging in two consecutive years. A polyphasic experimental approach was used to assess growing bacteria and degradation genes in the sediments. The bacterial communities were significantly different before and after dredging of the sediment. Several isolates collected from contaminated sediments showed an intrinsic capacity for degradation of phenanthrene (a PAH model compound). Quantititative real-time PCR was used to monitor the abundance of degradation genes in sediment microcosms spiked with phenanthrene. Although both xylE and phnAc genes increased in abundance in the microcosms, the isolates only carried phnAc genes. Isolates with closest 16S rRNA gene sequence matches to Exigobacterium oxidotolerans, a Pseudomonas sp. and a Gammaproteobacterium were identified by all approaches used as growing bacteria that are capable of phenanthrene degradation. These isolates were assigned species and strain designations as follows: Exiguobacterium oxidotolerans AE3, Pseudomonas fluorescens AE1 and Pseudomonas migulae AE2. We also identified and studied the distribution of actively growing bacteria along red-ox profiles in Baltic Sea sediments. Community structures were found to be significantly different at different red-ox depths. Also, according to multivariate statistical ordination analysis organic carbon, nitrogen, and red-ox potential were crucial parameters for structuring the bacterial communities on a vertical scale. Novel lineages of bacteria were obtained by sequencing 16S rRNA genes from different red-ox depths and sampling stations indicating that bacterial diversity in Baltic Sea sediments is largely unexplored.

sted, utgiver, år, opplag, sider
Uppsala: Sveriges Lantbruksuniversitet, 2007. s. 36
Serie
Acta Universitatis agriculturae Sueciae, ISSN 1652-6880 ; 2007:6
Emneord
Havsbottnen, Mikroorganismer
HSV kategori
Forskningsprogram
Östersjö- och Östeuropaforskning
Identifikatorer
urn:nbn:se:sh:diva-31261 (URN)91-576-7325-X (ISBN)
Veileder
Tilgjengelig fra: 2016-12-01 Laget: 2016-12-01 Sist oppdatert: 2016-12-01bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMedScopusPMC Full text

Person

Edlund, Anna

Søk i DiVA

Av forfatter/redaktør
Edlund, Anna
Av organisasjonen
I samme tidsskrift
Applied and Environmental Microbiology

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 287 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • harvard-anglia-ruskin-university
  • apa-old-doi-prefix.csl
  • sodertorns-hogskola-harvard.csl
  • sodertorns-hogskola-oxford.csl
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf