sh.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • harvard-anglia-ruskin-university
  • apa-old-doi-prefix.csl
  • sodertorns-hogskola-harvard.csl
  • sodertorns-hogskola-oxford.csl
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Changes in active bacterial communities before and after dredging of highly polluted Baltic Sea sediments
Södertörn University, School of Life Sciences. SLU.
SLU.
2006 (English)In: Applied and Environmental Microbiology, ISSN 0099-2240, E-ISSN 1098-5336, Vol. 72, no 10, p. 6800-6807Article in journal (Refereed) Published
Abstract [en]

Bacteria residing in sediments have key functions in the marine food web. However, it has been difficult to correlate the identity and activity of bacteria in sediments due to lack of appropriate methods beyond cultivation-based techniques. Our aim was to use a combination of molecular approaches, bromodeoxyuridine incorporation and immunocapture, terminal restriction fragment length polymorphism, and cloning and sequencing of 16S rRNA genes to assess the composition of growing bacteria in Baltic Sea sediments. The study site was a highly polluted area off the Swedish coast. The sediments were sampled in two consecutive years, before and after remediation, by dredging of the top sediments. Levels of polyaromatic hydrocarbons (PAHs), mercury, and polychlorinated biphenyls were dramatically reduced as a result of the cleanup project. The compositions of growing members of the communities were significantly different at the two sampling periods. In particular, members from the class Deltaproteobacteria and genus Spirochaeta were more dominant before dredging, but members of the classes Gammaproteobacteria and the Flavobacteria represented the most dominant growing populations after dredging. We also cultivated isolates from the polluted sediments that could transform the model PAH compound, phenanthrene. Some of these isolates were confirmed as dominant growing populations by the molecular methods as well. This suite of methods enabled us to link the identity and activity of the members of the sediment communities.

Place, publisher, year, edition, pages
2006. Vol. 72, no 10, p. 6800-6807
National Category
Microbiology
Identifiers
URN: urn:nbn:se:sh:diva-14278DOI: 10.1128/AEM.00971-06ISI: 000241170300047PubMedID: 16950911Scopus ID: 2-s2.0-33750091933OAI: oai:DiVA.org:sh-14278DiVA, id: diva2:468701
Available from: 2011-12-21 Created: 2011-12-20 Last updated: 2017-07-19Bibliographically approved
In thesis
1. Microbial diversity in Baltic Sea sediments
Open this publication in new window or tab >>Microbial diversity in Baltic Sea sediments
2007 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis focuses on microbial community structures and their functions in Baltic Sea sediments. First we investigated the distribution of archaea and bacteria in Baltic Sea sediments along a eutrophication gradient. Community profile analysis of 16S rRNA genes using terminal restriction length polymorphism (T-RFLP) indicated that archaeal and bacterial communities were spatially heterogeneous. By employing statistical ordination methods we observed that archaea and bacteria were structured and impacted differently by environmental parameters that were significantly linked to eutrophication. In a separate study, we analyzed bacterial communities at a different site in the Baltic Sea that was heavily contaminated with polyaromatic hydrocarbons (PAHs) and several other pollutants. Sediment samples were collected before and after remediation by dredging in two consecutive years. A polyphasic experimental approach was used to assess growing bacteria and degradation genes in the sediments. The bacterial communities were significantly different before and after dredging of the sediment. Several isolates collected from contaminated sediments showed an intrinsic capacity for degradation of phenanthrene (a PAH model compound). Quantititative real-time PCR was used to monitor the abundance of degradation genes in sediment microcosms spiked with phenanthrene. Although both xylE and phnAc genes increased in abundance in the microcosms, the isolates only carried phnAc genes. Isolates with closest 16S rRNA gene sequence matches to Exigobacterium oxidotolerans, a Pseudomonas sp. and a Gammaproteobacterium were identified by all approaches used as growing bacteria that are capable of phenanthrene degradation. These isolates were assigned species and strain designations as follows: Exiguobacterium oxidotolerans AE3, Pseudomonas fluorescens AE1 and Pseudomonas migulae AE2. We also identified and studied the distribution of actively growing bacteria along red-ox profiles in Baltic Sea sediments. Community structures were found to be significantly different at different red-ox depths. Also, according to multivariate statistical ordination analysis organic carbon, nitrogen, and red-ox potential were crucial parameters for structuring the bacterial communities on a vertical scale. Novel lineages of bacteria were obtained by sequencing 16S rRNA genes from different red-ox depths and sampling stations indicating that bacterial diversity in Baltic Sea sediments is largely unexplored.

Place, publisher, year, edition, pages
Uppsala: Sveriges Lantbruksuniversitet, 2007. p. 36
Series
Acta Universitatis agriculturae Sueciae, ISSN 1652-6880 ; 2007:6
Keywords
Havsbottnen, Mikroorganismer
National Category
Biological Sciences
Research subject
Baltic and East European studies
Identifiers
urn:nbn:se:sh:diva-31261 (URN)91-576-7325-X (ISBN)
Supervisors
Available from: 2016-12-01 Created: 2016-12-01 Last updated: 2016-12-01Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopusPMC Full text

Authority records

Edlund, Anna

Search in DiVA

By author/editor
Edlund, Anna
By organisation
School of Life Sciences
In the same journal
Applied and Environmental Microbiology
Microbiology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 285 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • harvard-anglia-ruskin-university
  • apa-old-doi-prefix.csl
  • sodertorns-hogskola-harvard.csl
  • sodertorns-hogskola-oxford.csl
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf