sh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • harvard-anglia-ruskin-university
  • apa-old-doi-prefix.csl
  • sodertorns-hogskola-harvard.csl
  • sodertorns-hogskola-oxford.csl
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Artificial intelligence in supply chain management: A systematic literature review
Mälardalen University.
Copenhagen Business School, Copenhagen, Denmark; SAVEGGY AB, Ideon Innovation, Ideon Science Park, Lund, Sweden.
Maynooth University, Maynooth, Co. Kildare, Ireland.
Södertörns högskola, Institutionen för samhällsvetenskaper, Företagsekonomi.ORCID-id: 0000-0003-2125-6155
Vise andre og tillknytning
2021 (engelsk)Inngår i: Journal of Business Research, ISSN 0148-2963, E-ISSN 1873-7978, Vol. 122, s. 502-517Artikkel, forskningsoversikt (Fagfellevurdert) Published
Abstract [en]

This paper seeks to identify the contributions of artificial intelligence (AI) to supply chain management (SCM) through a systematic review of the existing literature. To address the current scientific gap of AI in SCM, this study aimed to determine the current and potential AI techniques that can enhance both the study and practice of SCM. Gaps in the literature that need to be addressed through scientific research were also identified. More specifically, the following four aspects were covered: (1) the most prevalent AI techniques in SCM; (2) the potential AI techniques for employment in SCM; (3) the current AI-improved SCM subfields; and (4) the subfields that have high potential to be enhanced by AI. A specific set of inclusion and exclusion criteria are used to identify and examine papers from four SCM fields: logistics, marketing, supply chain and production. This paper provides insights through systematic analysis and synthesis.

sted, utgiver, år, opplag, sider
Elsevier, 2021. Vol. 122, s. 502-517
Emneord [en]
Artificial intelligence, Supply chain management, Systematic literature review
HSV kategori
Identifikatorer
URN: urn:nbn:se:sh:diva-42036DOI: 10.1016/j.jbusres.2020.09.009ISI: 000590682800003Scopus ID: 2-s2.0-85091631950OAI: oai:DiVA.org:sh-42036DiVA, id: diva2:1474253
Tilgjengelig fra: 2020-10-08 Laget: 2020-10-08 Sist oppdatert: 2022-10-03bibliografisk kontrollert

Open Access i DiVA

fulltext(1417 kB)543 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1417 kBChecksum SHA-512
565bd2f101f4324815e9323221c9b1bc0068fb0995976ea1560ecbbb2352939ca8d06977f280969d204a9433b5abbac15d29eaf8f03af3efecfdfd04504d6310
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstScopus

Person

Oghazi, Pejvak

Søk i DiVA

Av forfatter/redaktør
Oghazi, Pejvak
Av organisasjonen
I samme tidsskrift
Journal of Business Research

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 545 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 849 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • harvard-anglia-ruskin-university
  • apa-old-doi-prefix.csl
  • sodertorns-hogskola-harvard.csl
  • sodertorns-hogskola-oxford.csl
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf