sh.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • harvard-anglia-ruskin-university
  • apa-old-doi-prefix.csl
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Monitoring of antibiotic-induced alterations in the human intestinal microflora and detection of probiotic strains by use of terminal restriction fragment length polymorphism
Södertörns högskola, Institutionen för kemi, biologi, geografi och miljövetenskap. Karolinska Institute.
Karolinska Institute.
Södertörns högskola, Institutionen för kemi, biologi, geografi och miljövetenskap. Karolinska Institute.
Swedish University of Agricultural Sciences.
2005 (Engelska)Ingår i: Applied and Environmental Microbiology, ISSN 0099-2240, E-ISSN 1098-5336, Vol. 71, nr 1, s. 501-506Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Terminal restriction fragment length polymorphism (T-RFLP) was investigated as a tool for monitoring the human intestinal microflora during antibiotic treatment and during ingestion of a probiotic product. Fecal samples from eight healthy volunteers were taken before, during, and after administration of clindamycin. During treatment, four subjects were given a probiotic, and four subjects were given a placebo. Changes in the microbial intestinal community composition and relative abundance of specific microbial populations in each subject were monitored by using viable counts and T-RFLP fingerprints. T-RFLP was also used to monitor specific bacterial populations that were either positively or negatively affected by clindamycin. Some dominant bacterial groups, such as Eubacterium spp., were easily monitored by T-RFLP, while they were hard to recover by cultivation. Furthermore, the two probiotic Lactobacillus strains were easily tracked by T-RFLP and were shown to be the dominant Lactobacillus community members in the intestinal microflora of subjects who received the probiotic.

Ort, förlag, år, upplaga, sidor
2005. Vol. 71, nr 1, s. 501-506
Nationell ämneskategori
Biologiska vetenskaper
Identifikatorer
URN: urn:nbn:se:sh:diva-17365DOI: 10.1128/AEM.71.1.501-506.2005ISI: 000226458800062PubMedID: 15640226Scopus ID: 2-s2.0-12244292700OAI: oai:DiVA.org:sh-17365DiVA, id: diva2:571325
Tillgänglig från: 2012-11-22 Skapad: 2012-11-19 Senast uppdaterad: 2017-07-19Bibliografiskt granskad
Ingår i avhandling
1. Use of microbiomics to study human impacts on complex microbial communities
Öppna denna publikation i ny flik eller fönster >>Use of microbiomics to study human impacts on complex microbial communities
2006 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

The study of bacterial communities in nature is currently a challenge. The majority of bacteria in clinical and environmental samples have not yet been cultured and therefore we cannot fully understand their roles in nature and how the ecological balance in a specific microbial ecosystem can be disrupted. For example, exposure to pollutants in soil and antibiotics in the human gut can have large consequences on microbial populations but the magnitude of these impacts is difficult to assess. In this thesis, a combination of molecular techniques, microbiomics, were used to assess complex microbial communities in soil and the human gut. One goal of this thesis was to study the impact of the toxic compound, 4-chlorophenol, on the soil microbiota. In addition, a specific 4-chlorophenol degrading bacterium, Arthrobacter chlorophenolicus, was monitored in soil. In order to monitor the cells they were chromosomally tagged with marker genes encoding either the green fluorescent protein (the gfp gene) or firefly luciferase (the luc gene). During degradation of high levels of 4-chlorophenol in soil, total cells counts of A. chlorophenolicus cells could be measured by flow cytometry (GFP protein) and the metabolic activity could be measured by lurninometry (luciferase activity). In addition, the relative abundance of A. chlorophenolicus in soil could be measured by terminal restriction fragment length polymorphism (T-RFLP) and a higher relative abundance was detected in soil contaminated with 4chlorophenol compared with non-treated soil. The impacts of 4-chlorophenol and A. chlorophenolicus on the dominant members of the soil microbiota were also assessed by T-RFLP. Another goal of this thesis was to study the impact of a short term antibiotic administration in a long term perspective, using either clindamycin, in a two year study or a triple therapy for eradication of Helicobacter pylori containing clarithromycin and metronidazole, in a four year study, on the human fecal microbiota. Both the total bacterial community and specific populations, i.e. Bacteroides spp. and Enterococcus spp., were monitored by T-RFLP. The Bacteroides populations never returned to their pre-treatment composition after clindamycin exposure during the two year study period. Selection and persistence of resistant Bacteroides clones up to two years after treatment was furthermore detected. In the four year study, Enterococcus populations increased as a response to the clarithromycin and metronidazole treatment. An increase in the levels of antibiotic resistance genes, specific erm genes, conferring resistance to macrolides and lincosamides were detected for up to 2 and 4 years after both types of antibiotic treatments in the respective studies. It was also possible to specifically monitor two probiotic Lactobacillus strains and their transient colonization by T-RFLP. In conclusion, the use of a polyphasic approach with complementary analytical tools made it possible to obtain a comprehensive picture of complex microbial communities. In addition, specific bacteria of interest in complex soil and fecal samples could be monitored using microbiomics approaches.

Ort, förlag, år, upplaga, sidor
Stockholm: Karolinska instiutet, 2006. s. 37
Nationell ämneskategori
Biologiska vetenskaper
Identifikatorer
urn:nbn:se:sh:diva-31990 (URN)91-7140-960-2 (ISBN)
Disputation
2006-12-15, MB416, Alfred Nobels allé 7, Huddinge, 10:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2017-02-08 Skapad: 2017-02-08 Senast uppdaterad: 2017-02-08Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMedScopusPMC Full text

Personposter BETA

Jernberg, CeciliaEdlund, CharlottaJansson, J K

Sök vidare i DiVA

Av författaren/redaktören
Jernberg, CeciliaEdlund, CharlottaJansson, J K
Av organisationen
Institutionen för kemi, biologi, geografi och miljövetenskap
I samma tidskrift
Applied and Environmental Microbiology
Biologiska vetenskaper

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 153 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • harvard-anglia-ruskin-university
  • apa-old-doi-prefix.csl
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf