sh.sePublikationer
Driftinformation
Ett driftavbrott i samband med versionsuppdatering är planerat till 10/12-2024, kl 12.00-13.00. Under den tidsperioden kommer DiVA inte att vara tillgängligt
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • harvard-anglia-ruskin-university
  • apa-old-doi-prefix.csl
  • sodertorns-hogskola-harvard.csl
  • sodertorns-hogskola-oxford.csl
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Stock Price Prediction Using Machine Learning
Södertörns högskola, Institutionen för samhällsvetenskaper, Nationalekonomi.
2022 (Engelska)Självständigt arbete på avancerad nivå (magisterexamen), 20 poäng / 30 hpStudentuppsats (Examensarbete)
Abstract [en]

Accurate prediction of stock prices plays an increasingly prominent role in the stock market where returns and risks fluctuate wildly, and both financial institutions and regulatory authorities have paid sufficient attention to it. As a method of asset allocation, stocks have always been favored by investors because of their high returns. The research on stock price prediction has never stopped. In the early days, many economists tried to predict stock prices. Later, with the in-depth research of mathematical theory and the vigorous development of computer technology, people have found that the establishment of mathematical models can be very good, such as time series model, because its model is relatively simple and the forecasting effect is better. Time series model is applied in a period of time The scope gradually expanded. However, due to the non-linearity of stock data, some machine learning methods, such as support vector machines. Later, with the development of deep learning, some such as RNN, LSTM neural Networks, they can not only process non-linear data, but also retain memory for the sequence and retain useful information, which is positive. It is required for stock data forecasting. This article introduces the theoretical knowledge of time series model and LSTM neural network, and select real stocks in the stockmarket, perform modeling analysis and predict stock prices, and then use the root mean square error to compare the prediction results of several models. Since the time series model cannot make good use of the non-linear part of the stock data, can’t perform long-term memory, and LSTM neural network makes better use of non-linear data and has better use of sequence data. Useful information in the long-term memory, which makes the root mean square error of the prediction result, the LSTM neural network needs smaller than the time series model, indicating that LSTM neural network is a better stock price forecasting method. The time series for stock prices belong to non-stationary and non-linear data, making the prediction of future price trends extremely challenging. In order to learnthe long-term dependence of stock prices, deep learning methods such as the LSTM method are used to obtain longer data dependence and overall change patterns of stocks. This thesis uses 5000 observations from S&P500 index for empirical research, and introduce benchmark models, such as ARIMA, GARCH and other research methods for comparison, to verify the effectiveness and advantages of deep learning methods.

Ort, förlag, år, upplaga, sidor
2022. , s. 37
Nyckelord [en]
Machine Learning, Stock Price, Time Series Data, Deep Learning
Nationell ämneskategori
Ekonomi och näringsliv
Identifikatorer
URN: urn:nbn:se:sh:diva-49321OAI: oai:DiVA.org:sh-49321DiVA, id: diva2:1672304
Ämne / kurs
Nationalekonomi
Tillgänglig från: 2022-06-27 Skapad: 2022-06-19 Senast uppdaterad: 2022-06-27Bibliografiskt granskad

Open Access i DiVA

Stock Price Prediction Using Machine Learning(1165 kB)21014 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1165 kBChecksumma SHA-512
55f37262f221799b95ff87d5e69ef18bf5b3a31939e3f62497571e0345858867c61da13621efb13b83a742a21bc6ebfe52e710daa2874ba59e4a614e66e40813
Typ fulltextMimetyp application/pdf

Av organisationen
Nationalekonomi
Ekonomi och näringsliv

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 21023 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 5944 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • harvard-anglia-ruskin-university
  • apa-old-doi-prefix.csl
  • sodertorns-hogskola-harvard.csl
  • sodertorns-hogskola-oxford.csl
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf