sh.sePublications
Change search
Link to record
Permanent link

Direct link
Publications (10 of 48) Show all publications
Katrantsiotis, C., Vinogradova, O., Dahl, M., Palm, V., Rönnby, J., Gaillard, M.-J., . . . Andrén, E. (2025). Holocene shoreline displacement, land-cover change and human settlement distribution on the southeast coast of Sweden. Journal of Quaternary Science, 40(1), 124-140
Open this publication in new window or tab >>Holocene shoreline displacement, land-cover change and human settlement distribution on the southeast coast of Sweden
Show others...
2025 (English)In: Journal of Quaternary Science, ISSN 0267-8179, E-ISSN 1099-1417, Vol. 40, no 1, p. 124-140Article in journal (Refereed) Published
Abstract [en]

In this study, we investigate the interplay between relative sea-level changes, the development of human settlements and land-cover changes in the Vastervik-Gamlebyviken region on the southeast coast of Sweden, an important archaeological area from the Mesolithic until recent times. The reconstruction of shore displacement was based on diatom analysis of radiocarbon-dated sediment cores from three lake basins combined with previously published lake isolation data. The resulting curve was used to construct palaeogeographical maps for selected time windows. Land-cover changes were inferred from pollen data from three lakes using the Landscape Reconstruction Algorithm with its two models REVEALS and LOVE. Our data suggest that people took advantage of the land gained due to an overall fall in relative sea level from similar to 35 to similar to 3 metres above sea level (m a.s.l.) over the last 10 000 years, interrupted by periods of transgression and highstands. A sea-level regression of similar to 16 m occurred between 10 000 and 8500 cal a BP followed by an similar to 3-4-m sea-level rise, reaching similar to 22 m a.s.l. at similar to 7500 cal a BP, which corresponds to the maximum Littorina Sea shoreline in the area. The available archaeological findings for the Mesolithic and Early Neolithic (8950-5450 cal a BP) agree well with the shore displacement curve showing that settlements and human activities were concentrated along or above the shorelines as defined from our study. During the transgression after 8500 cal a BP, however, seasonal settlements were submerged (as shown by findings of polished stone tools and hearths buried in sand) and used again during the subsequent regression after 4600 cal a BP. The Iron Age (2450-900 cal a BP) corresponds partly to a highstand at similar to 11 m a.s.l. between 3600 and 2000 cal a BP and partly to a rapid regression of similar to 8 m between 2000 and 1500 cal a BP, and both periods coincide with known human activities along the contemporaneous shoreline. The rapid regression after 2000 cal a BP corresponds to an increase of both regional and local landscape openness and the beginning of a continuous record of crop cultivation.

Place, publisher, year, edition, pages
John Wiley & Sons, 2025
Keywords
Baltic Sea, diatoms, land-use reconstruction, LOVE model, Neolithic shore displacement, REVEALS model, settlements
National Category
Archaeology Geology Environmental Sciences
Research subject
Baltic and East European studies
Identifiers
urn:nbn:se:sh:diva-55207 (URN)10.1002/jqs.3666 (DOI)001344654300001 ()2-s2.0-85208045566 (Scopus ID)
Funder
The Foundation for Baltic and East European Studies, 55/2017The Foundation for Baltic and East European Studies, 21-PD2-0002
Available from: 2024-11-18 Created: 2024-11-18 Last updated: 2025-01-02Bibliographically approved
Vinogradova, O., Gaillard, M.-J., Andrén, E., Palm, V., Rönnby, J., Dahl, M., . . . Andrén, T. (2024). 3000 Years of past regional and local land-use and land-cover change in the southeastern Swedish coastal area: Early human-induced increases in landscape openness as a potential nutrient source to the Baltic Sea coastal waters. The Holocene, 34(1), 56-73
Open this publication in new window or tab >>3000 Years of past regional and local land-use and land-cover change in the southeastern Swedish coastal area: Early human-induced increases in landscape openness as a potential nutrient source to the Baltic Sea coastal waters
Show others...
2024 (English)In: The Holocene, ISSN 0959-6836, E-ISSN 1477-0911, Vol. 34, no 1, p. 56-73Article in journal (Refereed) Published
Abstract [en]

Reconstructions of past land use and related land-cover changes at local and regional scales are needed to evaluate the potential long-term impacts of land use on the coastal waters of the Baltic Sea. In this purpose, we selected the Gamleby area at the Swedish Baltic Sea coast for a case study. We use a new, high resolution pollen record from a small lake (Lillsjön) located 3.6 km NNW of the bay Gamlebyviken and detailed analysis of the available archeological data to reconstruct local land-use changes over the last 3000 years. To estimate land-cover change at local (2–3 km radius area) and regional (50 km radius area) scales we use four additional, published pollen records from two small and two large lakes (25–70 km S of Lillsjön) and the Landscape Reconstruction Algorithm, a pollen-vegetation modeling scheme. Results show that regional and local (small lakes Lillsjön and Hyttegöl) land-cover changes are comparable over the last 1500 years (Late Iron Age to present), and that landscape openness was much larger locally than regionally (difference of 20–40% cover over the last 500 years). The periods of largest potential impacts on the Gamlebyviken Bay from regional and local land use are 200–950 CE (Late Iron Age) and 1450 CE to present, and of lowest potential impacts 950–1450 CE. The question on whether the large landscape openness 1150–50 BCE and significant afforestation 50 BCE–200 CE reconstructed for Lillsjön’s area are characteristic of the Gamlebyviken region will require additional pollen records in the catchment area. 

Place, publisher, year, edition, pages
Sage Publications, 2024
Keywords
Archeological data, Gamlebyviken, Landscape Reconstruction Algorithm, Late Holocene, pollen analysis, REVEALS and LOVE models
National Category
Environmental Sciences Geology
Research subject
Baltic and East European studies
Identifiers
urn:nbn:se:sh:diva-52570 (URN)10.1177/09596836231200433 (DOI)001084189400001 ()2-s2.0-85174272828 (Scopus ID)
Funder
The Foundation for Baltic and East European Studies, 21-PD2-0002The Foundation for Baltic and East European Studies, 55/2017
Available from: 2023-10-26 Created: 2023-10-26 Last updated: 2024-01-12Bibliographically approved
Dahl, M., Gullström, M., Bernabeu, I., Serrano, O., Leiva-Dueñas, C., Linderholm, H. W., . . . Mateo, M. A. (2024). A 2,000-Year Record of Eelgrass (Zostera marina L.): Colonization Shows Substantial Gains in Blue Carbon Storage and Nutrient Retention. Global Biogeochemical Cycles, 38(3), Article ID e2023GB008039.
Open this publication in new window or tab >>A 2,000-Year Record of Eelgrass (Zostera marina L.): Colonization Shows Substantial Gains in Blue Carbon Storage and Nutrient Retention
Show others...
2024 (English)In: Global Biogeochemical Cycles, ISSN 0886-6236, E-ISSN 1944-9224, Vol. 38, no 3, article id e2023GB008039Article in journal (Refereed) Published
Abstract [en]

Assessing historical environmental conditions linked to habitat colonization is important for understanding long-term resilience and improving conservation and restoration efforts. Such information is lacking for the seagrass Zostera marina, an important foundation species across cold-temperate coastal areas of the Northern Hemisphere. Here, we reconstructed environmental conditions during the last 14,000 years from sediment cores in two eelgrass (Z. marina) meadows along the Swedish west coast, with the main aims to identify the time frame of seagrass colonization and describe subsequent biogeochemical changes following establishment. Based on vegetation proxies (lipid biomarkers), eelgrass colonization occurred about 2,000 years ago after geomorphological changes that resulted in a shallow, sheltered environment favoring seagrass growth. Seagrass establishment led to up to 20- and 24-fold increases in sedimentary carbon and nitrogen accumulation rates, respectively. This demonstrates the capacity of seagrasses as efficient ecosystem engineers and their role in global change mitigation and adaptation through CO2 removal, and nutrient and sediment retention. By combining regional climate projections and landscape models, we assessed potential climate change effects on seagrass growth, productivity and distribution until 2100. These predictions showed that seagrass meadows are mostly at risk from increased sedimentation and hydrodynamic changes, while the impact from sea level rise alone might be of less importance in the studied area. This study showcases the positive feedback between seagrass colonization and environmental conditions, which holds promise for successful conservation and restoration efforts aimed at supporting climate change mitigation and adaptation, and the provision of several other crucial ecosystem services. © 2024. The Authors.

Place, publisher, year, edition, pages
John Wiley & Sons, 2024
Keywords
climate change, environmental change, millennial scale, nature-based solution, paleoreconstruction, seagrass, environmental conditions, global change, regional climate, sea level change, sedimentation
National Category
Climate Science Ecology
Research subject
Environmental Studies
Identifiers
urn:nbn:se:sh:diva-53746 (URN)10.1029/2023GB008039 (DOI)001181933100001 ()2-s2.0-85187910776 (Scopus ID)
Funder
The Foundation for Baltic and East European Studies, 21-GP-0005The Foundation for Baltic and East European Studies, 21-PD2-0002Swedish Research Council Formas, 2021-01280Helge Ax:son Johnsons stiftelse , F21-0103Modelling initiative of the Bert Bolin Centre for Climate Change
Available from: 2024-03-28 Created: 2024-03-28 Last updated: 2025-02-01Bibliographically approved
Schmidt, A., Romahn, J., Andrén, E., Kremp, A., Kaiser, J., Arz, H. W., . . . Epp, L. S. (2024). Decoding the Baltic Sea's past and present: A simple molecular index for ecosystem assessment. Ecological Indicators, 166, Article ID 112494.
Open this publication in new window or tab >>Decoding the Baltic Sea's past and present: A simple molecular index for ecosystem assessment
Show others...
2024 (English)In: Ecological Indicators, ISSN 1470-160X, E-ISSN 1872-7034, Vol. 166, article id 112494Article in journal (Refereed) Published
Abstract [en]

Marginal sea ecosystems, such as the Baltic Sea, are severely affected by anthropogenic pressures, such as climate warming, pollution, and eutrophication, which increased in the course of the past century. Biodiversity monitoring data and assessment of environmental status in such systems have typically been carried out only for the past few decades, if at all, and knowledge on pre-impact stability and good ecological status is limited. An extension of monitoring time series can potentially be achieved through analyses of paleoecological records, e.g. for phytoplankton, which form the base of the food web and are highly susceptible to environmental changes. Within the phytoplankton community, dinoflagellates and diatoms play a significant role as primary producers, and their relative dominance in the spring bloom, calculated as Dia/Dino index, is used as an indicator for the environmental status of the Baltic Sea. To extend time series on the dominance patterns and include non-fossilized dinoflagellates, we here establish a simple droplet digital PCR (ddPCR) reaction on ancient DNA from sediment cores that decodes phytoplankton dynamics. We focus on two common spring bloom species, the diatom Skeletonema marinoi and the dinoflagellate Apocalathium malmogiense, for which we evaluate a DNA based dominance index. It performs very well in comparison to DNA metabarcoding and modern monitoring and can elucidate past species dominance across the past century and across millennia in different basins of the Baltic. For the past century, we see a dominance shift already starting before the mid-20th century in two of the Baltic Sea basins, thus substantially predating current monitoring programs. Shifts are only partly coeval among the cores and the index shows different degrees of stability. This pattern is confirmed across millennia, where a long-term stable relationship between the diatom and the dinoflagellate is observed in the Eastern Gotland Basin, while data from the Gulf of Finland bear testimony to a much more unstable relationship. This confirms that good ecological status based on the dominance pattern of diatoms and dinoflagellates must be established locally and exemplifies how sediment core DNA can be employed to extend monitoring data.

Place, publisher, year, edition, pages
Elsevier, 2024
Keywords
Biomonitoring phytoplankton, ddPCR, Diatom, Diatom/dinoflagellate index, Dinoflagellate, Ecological indicator, Environmental impact, Metabarcoding, sedaDNA, Sedimentary ancient DNA, Atlantic Ocean, Baltic Sea, Anthropogenic, Aspect ratio, Bioremediation, Blooms (metal), Climate change, Ecosystems, Exhaust gases, Industrial wastes, Marine pollution, Phytoplankton, Plankton, Biomonitoring, Droplet digital PCR, Ecological indicators, Sedadnum, DNA, food web, sediment core, time series analysis, Eutrophication
National Category
Ecology
Research subject
Baltic and East European studies
Identifiers
urn:nbn:se:sh:diva-54676 (URN)10.1016/j.ecolind.2024.112494 (DOI)001301356500001 ()2-s2.0-85201764225 (Scopus ID)
Funder
The Foundation for Baltic and East European Studies, 42/2019
Note

This study was funded by the K314/2020 grant of the Collaborative Excellence Programme of the Leibniz Association.

Available from: 2024-09-03 Created: 2024-09-03 Last updated: 2025-01-09Bibliographically approved
Andrén, E., Vinogradova, O., Lönn, M., Belle, S., Dahl, M., Palm, V., . . . Andrén, T. (2024). Modern land use changes drive shifts in nutrient cycling and diatom assemblages in the Baltic Sea coastal zone: A millennial perspective with a case study from Gamlebyviken, Swedish east coast. Quaternary Science Reviews, 346, Article ID 109058.
Open this publication in new window or tab >>Modern land use changes drive shifts in nutrient cycling and diatom assemblages in the Baltic Sea coastal zone: A millennial perspective with a case study from Gamlebyviken, Swedish east coast
Show others...
2024 (English)In: Quaternary Science Reviews, ISSN 0277-3791, E-ISSN 1873-457X, Vol. 346, article id 109058Article in journal (Refereed) Published
Abstract [en]

This study aims to investigate and disentangle the impact of land use and climate variability on the Baltic Sea coastal zone from a millennial perspective. To assess the environmental status of the coastal zone we make use of siliceous microfossils (mainly diatoms), stable nitrogen and carbon isotopes, organic carbon accumulation rates, and lithological changes analyzed in a sediment core collected in Gamlebyviken, Swedish east coast, dated to cover the last 3000 years. Changes in land use and vegetation cover are modelled using pollen stratigraphical data to obtain the percentage coverage of coniferous woodland (Pinus and Picea), deciduous woodland, wetland (Cyperaceae), grassland (including Juniperus) and cropland (cereals) while changes in climatic conditions are assessed through well-documented climatic periods that have occurred in the Baltic Sea region. The reconstructed regional vegetation cover shows that already 3000 years ago, humans used the landscape for both animal husbandry (grasslands) and farming (cropland), but the impact on the Baltic coastal waters was minor. The diatom accumulation rates were quite high (similar to 3100-2600 cal yr BP) containing taxa indicative of high nutrient conditions/upwelling, and stable carbon isotopes show that the carbon was produced in the basin but did not result in elevated organic carbon accumulation rates. A gradual change to less marine conditions in Gamlebyviken from about 2500 to 1400 cal yr BP can be attributed to the ongoing land uplift which resulted in a more enclosed embayment with only a narrow inlet area today. The Medieval Climate Anomaly (1000-700 cal yr BP/950-1250 CE) is a time where extensive eutrophication is registered in the open Baltic Sea, but afforestation is recorded between 1000 and 500 cal yr BP and attributed to the expansion of spruce favored by land-use reorganization with a transition from a one-course rotation system to the three-course rotation system fully established in southern Sweden in the 13th century, and only minor environmental change is recorded in the coastal zone. The Little Ice Age is documented in our data between 400 and 250 cal yr BP/1550-1700 CE as a decrease in regional cropland (cereals) cover, possibly indicating years of poor crop harvest, and changes in the Baltic coastal zone are evidenced as low carbon and diatom accumulation rates, increase in benthic diatom taxa (low turbidity), and high abundance in diatom taxa associated with sea ice indicating a cold climate. The most significant changes occurred from about 100 cal yr BP/1850 CE up to present, with a maximum regional cover of grassland and cropland (ca. 35%) at the expense of deciduous woodland, and major changes indicative of a highly eutrophic environment recorded in the coastal zone. Organic carbon accumulation rates peaked in 1968 CE at approximately 134 g C m(2) yr(-1) before subsequently declining to present-day values of 53 g C m(2) yr(-1), mirroring a similar trend observed in diatom accumulation rates. The high organic carbon accumulation rate shows that deep unvegetated accumulation bottoms in the coastal Baltic Sea serve as carbon sinks and are worth exploring for their potential in mitigating climate change. Variation partitioning shows that 26% of the variance in the diatom assemblages is associated with land use changes. The variables grassland, cropland, and stable nitrogen isotopes are accordingly strong predictors of environmental change in the Baltic coastal zone as reflected by the diatom assemblages.

Place, publisher, year, edition, pages
Elsevier, 2024
Keywords
Late Holocene, Micropaleontology, Diatoms, Stable isotopes, Organic carbon accumulation rate, Pollen, REVEALS model, LOVE model, Vegetation history, Eutrophication, Bronze Age
National Category
Environmental Sciences Archaeology Geology
Research subject
Baltic and East European studies
Identifiers
urn:nbn:se:sh:diva-55812 (URN)10.1016/j.quascirev.2024.109058 (DOI)001361731100001 ()2-s2.0-85209237673 (Scopus ID)
Funder
The Foundation for Baltic and East European Studies, 55/2017The Foundation for Baltic and East European Studies, 21-PD2-0002
Available from: 2024-12-09 Created: 2024-12-09 Last updated: 2024-12-09Bibliographically approved
Katrantsiotis, C., Dahl, M., Palm, V., Rönnby, J., Andrén, T. & Andrén, E. (2023). Holocene relative sea level changes in the Vastervik-Gamlebyviken region on the southeast coast of Sweden, southern Baltic Sea. Boreas, 52(2), 206-222
Open this publication in new window or tab >>Holocene relative sea level changes in the Vastervik-Gamlebyviken region on the southeast coast of Sweden, southern Baltic Sea
Show others...
2023 (English)In: Boreas, ISSN 0300-9483, E-ISSN 1502-3885, Vol. 52, no 2, p. 206-222Article in journal (Refereed) Published
Abstract [en]

We reconstruct the Holocene shore displacement of the Vastervik-Gamlebyviken area on the southeast coast of Sweden, characterised by a maritime cultural landscape and archaeological significance since the Mesolithic. Sediment cores were retrieved from four lake basins that have been raised above sea level due to the postglacial land uplift and eustatic sea level changes after the melting of the Fennoscandian Ice Sheet. The cores were radiocarbon dated and analysed for loss on ignition and diatoms. The isolation thresholds of the basins were determined using LiDAR data. The results provide evidence for the initiation of the first Littorina Sea transgression in this area at 8.5 thousand calibrated years before present (cal. ka BP). A relative sea level rise by similar to 7 m a.s.l. is recorded between 8.0 and 7.5 cal. ka BP with a highstand at similar to 22 m a.s.l. between 7.5 and 6.2 cal. ka BP. These phases coincide with the second and third Littorina Sea transgressions, respectively, in the Blekinge area, southern Sweden and are consistent with the final deglaciation of North America. After 6.2 cal. ka BP, the relative sea level dropped below 22 m a.s.l., and remained at similar to 20 m a.s.l. until 4.6 cal. ka BP coinciding with the fourth Littorina Sea transgression in Blekinge. From 4.6 to 4.2 cal. ka BP, the shore displacement shows a regression rate of 10 mm a(-1) followed by a slowdown with a mean value of 4.6 mm a(-1) until 1.6 cal. ka BP, when the relative sea level dropped below 3.3 m a.s.l. The Middle to Late Holocene highstand and other periods of minor sea level transgressions and/or higher salinity between 6.2 and 1.7 cal. ka BP are attributed to a combination of warmer climate and higher inflow of saline waters in the southern Baltic Sea due to stronger westerlies, caused by variations in the North Atlantic atmospheric patterns.

Place, publisher, year, edition, pages
John Wiley & Sons, 2023
National Category
Archaeology Earth and Related Environmental Sciences
Research subject
Baltic and East European studies
Identifiers
urn:nbn:se:sh:diva-50107 (URN)10.1111/bor.12605 (DOI)000864284500001 ()2-s2.0-85139201509 (Scopus ID)
Funder
The Foundation for Baltic and East European Studies, 55/2017The Foundation for Baltic and East European Studies, 21-PD2-0002
Available from: 2022-10-21 Created: 2022-10-21 Last updated: 2025-01-31Bibliographically approved
Moberg, C., Wolrath Söderberg, M., Sandberg, L., Lindblad, I., Sjöholm, C., Gullström, M., . . . Stedt, K. (2022). De unga gör helt rätt när de stämmer staten: 1 620 forskare och lärare i forskarvärlden: Vi ställer oss bakom Auroras klimatkrav. Aftonbladet (2022-12-07)
Open this publication in new window or tab >>De unga gör helt rätt när de stämmer staten: 1 620 forskare och lärare i forskarvärlden: Vi ställer oss bakom Auroras klimatkrav
Show others...
2022 (Swedish)In: Aftonbladet, no 2022-12-07, p. 2Article in journal, News item (Other (popular science, discussion, etc.)) Published
Abstract [sv]

Vi, 1 620 forskare samt lärare vid universitet och högskolor, är eniga med de unga bakom Auroramålet: De drabbas och riskerar att drabbas allvarligt av klimatkrisen under sin livstid. De klimatåtgärder vi vidtar i närtid avgör deras framtid. Sverige måste ta ansvar och göra sin rättvisa andel av det globala klimatarbetet. 

I strid med Parisavtalet ökar utsläppen av växthusgaser i en takt som gör att 1,5-gradersmålet kan överskridas om några år. De globala effekterna blir allt mer synliga med ständiga temperaturrekord, smältande isar, havshöjning och extremväder som torka, förödande bränder och skyfall med enorma översvämningar, som i Pakistan nyligen. Försörjningen av befolkningen utsätts för allvarliga hot i många länder.

Minskningen av den biologiska mångfalden är extrem. Klimatkrisen är enligt WHO det största hotet mot människors hälsa i hela världen och barn utgör en särskilt sårbar grupp. Med Sveriges nordliga läge sker uppvärmningen här dubbelt så fort som det globala genomsnittet. Det förskjuter utbredningsområden för växtlighet och sjukdomsbärande insekter och ökar förekomsten av extremväder såsom värmeböljor, skogsbränder och översvämningar samt av många olika sorters infektioner och allergier. När extremväder ökar, ökar även stressen och risken för mental ohälsa. Värmeböljor ökar risken för sjukdom och död hos sårbara grupper som äldre, små barn och personer med kroniska sjukdomar. De negativa effekterna på hälsan kommer att öka i takt med klimatkrisen och barn riskerar att drabbas av ackumulerade negativa hälsoeffekter under hela sina liv. Redan i dag är mer än hälften av unga mellan 12 och 18 år i Sverige ganska eller mycket oroliga för klimat och miljö. Detta är förståeligt när våra beslutsfattare inte gör vad som krävs.

Den juridiska och moraliska grunden för arbetet mot klimatförändringarna är att varje land måste göra sin rättvisa andel av det globala klimatarbetet. Centralt i det internationella klimatramverket är att rika länder med höga historiska utsläpp, däribland Sverige, måste gå före resten av världen. Dessa länder måste också bidra till att finansiera klimatomställningen i länderna i det Globala Syd, som är minst ansvariga för klimatkrisen men drabbas hårdast. Denna rättviseprincip är tydlig i Parisavtalet och var en het diskussionsfråga under COP27 i Sharm el-Sheikh, men lyser med sin frånvaro i det svenska klimatarbetet. 

Sverige har satt mål för att minska sina utsläpp. Men de är helt otillräckliga: minskningstakten är för låg och målen tillåter samtidigt att åtgärder skjuts på framtiden. Dessutom exkluderas merparten av Sveriges utsläpp från de svenska nationella utsläppsmålen; bland annat utelämnas utsläpp som svensk konsumtion orsakar utanför Sveriges gränser, utsläpp från utrikes transporter och utsläpp från markanvändning och skogsbruk, exempelvis utsläpp från förbränning av biobränslen eller utsläpp från dikade våtmarker (Prop. 2016/17:146 s.25-28).

Sverige saknar dessutom ett eget mål för att öka upptaget av växthusgaser genom utökat skydd och restaurering av ekosystem, något som krävs för att begränsa de värsta konsekvenserna av klimatkrisen (IPCC s.32). Trots dessa låga ambitioner misslyckas Sverige med att nå sina utsläppsmål, konstaterar både Klimatpolitiska rådet och Naturvårdsverket. En klimatpolitik i linje med Parisavtalet kräver både att alla typer av växthusgasutsläpp minskar samtidigt som – inte i stället för – upptaget av växthusgaser maximeras: i dag misslyckas Sverige på bägge fronter.

Slutsatsen är tydlig. Sverige vidtar inte de åtgärder som krävs för att skydda barns och ungdomars rättigheter enligt Europakonventionen till skydd för de mänskliga rättigheterna. Detta medför allvarliga risker för liv och hälsa för unga generationer, människor i andra länder och särskilt utsatta grupper. Detta kan inte fortsätta. Därför ställer vi oss bakom Auroras krav att Sverige börjar göra sin rättvisa andel och omedelbart sätter igång ett omfattande och långtgående klimatarbete som vilar på vetenskaplig grund och sätter rättvisa i centrum.

Place, publisher, year, edition, pages
Aftonbladet, 2022. p. 2
Keywords
Klimatförändringar; växthusgaser; mänskliga rättigheter
National Category
Other Legal Research Criminology
Identifiers
urn:nbn:se:sh:diva-50340 (URN)
Note

Aftonbladet Debatt

Available from: 2022-12-07 Created: 2022-12-07 Last updated: 2025-02-20Bibliographically approved
Gerhardt, K., Wolrath Söderberg, M., Lindblad, I., Diderichsen, Ö., Gullström, M., Dahlin, M., . . . Gradén, M. (2022). Nog nu, politiker – ta klimatkrisen på allvar. Aftonbladet (2022-08-25)
Open this publication in new window or tab >>Nog nu, politiker – ta klimatkrisen på allvar
Show others...
2022 (Swedish)In: Aftonbladet, no 2022-08-25Article in journal, News item (Other (popular science, discussion, etc.)) Published
Place, publisher, year, edition, pages
Aftonbladet Hierta, 2022
National Category
Other Social Sciences Environmental Sciences
Identifiers
urn:nbn:se:sh:diva-49755 (URN)
Note

Debattartikel från 1944 svenska forskare och anställda i forskarvärlden.

Available from: 2022-08-26 Created: 2022-08-26 Last updated: 2025-01-08Bibliographically approved
Sanyal, A., Larsson, J., van Wirdum, F., Andrén, T., Moros, M., Lönn, M. & Andrén, E. (2022). Not dead yet: Diatom resting spores can survive in nature for several millennia. American Journal of Botany, 67-82
Open this publication in new window or tab >>Not dead yet: Diatom resting spores can survive in nature for several millennia
Show others...
2022 (English)In: American Journal of Botany, ISSN 0002-9122, E-ISSN 1537-2197, p. 67-82Article in journal (Refereed) Published
Abstract [en]

PREMISE: Understanding the adaptive capacities of species over long timescales lies in examining the revived recent and millennia old resting spores buried in sediments. We show for the first time the revival, viability and germination rate of resting spores of the diatom Chaetoceros deposited in sub-seafloor sediments from three ages (recent: 0-80 years; ancient: ~1250 (Medieval Climate Anomaly) and ~6600 (Holocene Thermal Maximum) calendar year before present.

METHODS: Recent and ancient Chaetoceros spores were revived to examine their viability and germination rate. Light and scanning electron microscopy and Sanger sequencing was done to identify the species.

KEY RESULTS: We show that ~6600 cal. year BP old Chaetoceros resting spores are still viable and the vegetative reproduction in recent and ancient resting spores vary. The time taken to germinate is three hours to 2-3 days in both recent and ancient spores, but the germination rate of the spores decreased with increasing age. The germination rate of the recent spores was ~41% while that of the ancient spores were ~31% and ~12% for the ~1250 and ~6600 cal. year BP old resting spores. Based on the morphology of the germinated vegetative cells we identified the species as Chaetoceros muelleri var. subsalsum. Sanger sequences of nuclear and chloroplast markers identified the species as Chaetoceros muelleri.

CONCLUSIONS: We identify a unique model system, Chaetoceros muelleri var. subsalsum and show that recent and ancient resting spores of the species buried in sediments in the Baltic Sea can be revived and used for long-term evolutionary studies.

Place, publisher, year, edition, pages
Botanical Society of America, 2022
Keywords
Baltic Sea, Chaetoceros muelleri var. subsalsum, Germination rate, Resting spore concentration, Resurrection ecology
National Category
Botany Ecology
Research subject
Baltic and East European studies
Identifiers
urn:nbn:se:sh:diva-46593 (URN)10.1002/ajb2.1780 (DOI)000739921100001 ()34648178 (PubMedID)2-s2.0-85122424760 (Scopus ID)
Funder
The Foundation for Baltic and East European Studies, 75/2014
Available from: 2021-10-20 Created: 2021-10-20 Last updated: 2022-03-02Bibliographically approved
Warnock, J., Andrén, E., Juggins, S., Lewis, J., Ryves, D. B., Andrén, T. & Weckström, K. (2020). A high‐resolution diatom‐based Middle and Late Holocene environmental history of the Little Belt region, Baltic Sea. Boreas (1), 1-16
Open this publication in new window or tab >>A high‐resolution diatom‐based Middle and Late Holocene environmental history of the Little Belt region, Baltic Sea
Show others...
2020 (English)In: Boreas, ISSN 0300-9483, E-ISSN 1502-3885, no 1, p. 1-16Article in journal (Refereed) Published
Abstract [en]

The large‐scale shifts in the salinity of the Baltic Sea over the Holocene are well understood and have been comprehensively documented using sedimentary proxy records. More recent work has focused on understanding how past salinity fluctuations have affected other ecological parameters (e.g. primary productivity, nutrient content) of the Baltic basin, and salinity changes over key events and over short time scales are still not well understood. The International Ocean Drilling Program Expedition 347 cored the Baltic basin in order to collect basin‐wide environmental records through a glacial–interglacial cycle. Site M0059 is located in the Little Belt between the Baltic Sea and the Atlantic Ocean. A composite splice section from Site M0059 was analysed at a decadal resolution to study changes in salinity, nutrient conditions and other surface water column parameters based on changes in diatom assemblages and on quantitative diatom‐based salinity inferences. A mesotrophic slightly brackish assemblage is seen in the lowermost analysed depths, corresponding to 7800–7500 cal. a BP. An increase in salinity and nutrient content of the water column leads into a meso‐eutrophic brackish phase. The observed salinity increase is rapid, lasting from 7500 to 7150 cal. a BP. Subsequently, the Little Belt becomes oligotrophic and is dominated by tychopelagic diatoms from c. 7100 to c. 3900 cal. a BP. This interval contains some of the highest salinities observed followed by diatom assemblages similar to those of the Northern Atlantic Ocean, composed primarily of cosmopolitan open ocean marine diatoms. A return to tychopelagic productivity is seen from 3850 to 980 cal. a BP. Anthropogenic eutrophication is detected in the last 300 years of the record, which intensifies in the uppermost sediments. These results represent the first decadally resolved record in the region and provide new insight into the transition to a brackish basin and subsequent ecological development.

Place, publisher, year, edition, pages
John Wiley & Sons, 2020
National Category
Environmental Sciences
Research subject
Baltic and East European studies
Identifiers
urn:nbn:se:sh:diva-39395 (URN)10.1111/bor.12419 (DOI)000505508500001 ()2-s2.0-85074585844 (Scopus ID)
Funder
The Foundation for Baltic and East European Studies, 75/2014
Available from: 2019-11-15 Created: 2019-11-15 Last updated: 2022-05-03Bibliographically approved
Projects
Environmental Risk Governance of the Baltic Sea (RISKGOV) [A032-2008_OSS]; Södertörn University; Publications
Gilek, M., Karlsson, M., Linke, S. & Smolarz, K. (Eds.). (2016). Environmental Governance of the Baltic Sea (1ed.). Cham: SpringerGilek, M., Karlsson, M., Linke, S. & Smolarz, K. (2016). Environmental Governance of the Baltic Sea: Identifying Key Challenges, Research Topics and Analytical Approaches (1ed.). In: Michael Gilek, Mikael Karlsson, Sebastian Linke, Katarzyna Smolarz (Ed.), Environmental Governance of the Baltic Sea: (pp. 1-17). SpringerKarlsson, M., Gilek, M. & Lundberg, C. (2016). Eutrophication and the Ecosystem Approach to Management: A Case Study of Baltic Sea Environmental Governance (1ed.). In: Michael Gilek, Mikael Karlsson, Sebastian Linke, Katarzyna Smolarz (Ed.), Environmental Governance of the Baltic Sea: (pp. 21-44). Cham: SpringerKarlsson, M. & Gilek, M. (2016). Governance of Chemicals in the Baltic Sea Region: A Study of Three Generations of Hazardous Substances (1ed.). In: Michael Gilek, Mikael Karlsson, Sebastian Linke, Katarzyna Smolarz (Ed.), Environmental Governance of the Baltic Sea: (pp. 97-123). Cham: SpringerJönsson, A.-M., Boström, M., Dreyer, M. & Söderström, S. (2016). Risk Communication and the Role of the Public: Towards Inclusive Environmental Governance of the Baltic Sea? (1ed.). In: Michael Gilek Mikael Karlsson Sebastian Linke Katarzyna Smolarz (Ed.), Environmental Governance of the Baltic Sea: (pp. 205-227). Cham: SpringerLinke, S., Gilek, M. & Karlsson, M. (2016). Science-Policy Interfaces in Baltic Sea Environmental Governance: Towards Regional Cooperation and Management of Uncertainty? (1ed.). In: Gilek et al. (Ed.), Environmental Governance of the Baltic Sea: (pp. 173-203). Cham: SpringerGilek, M. & Karlsson, M. (2016). Seeking Pathways Towards Improved Environmental Governance of the Baltic Sea (1ed.). In: Michael Gilek, Mikael Karlsson, Sebastian Linke, Katarzyna Smolarz (Ed.), Environmental Governance of the Baltic Sea: (pp. 229-246). Cham: SpringerBoström, M., Grönholm, S. & Hassler, B. (2016). The Ecosystem Approach to Management in Baltic Sea Governance: Towards Increased Reflexivity? (1ed.). In: Michael Gilek, Mikael Karlsson, Sebastian Linke, Katarzyna Smolarz (Ed.), Environmental Governance of the Baltic Sea: (pp. 149-172). Cham: SpringerKern, K. & Gilek, M. (2015). Governing Europe’s Marine Environment: Key Topics and Challenges. In: Michael Gilek and Kristine Kern (Ed.), Governing Europe’s Marine Environment: Europeanization of Regional Seas or Regionalization of EU Policies? (pp. 1-12). Farnham, England: AshgateGilek, M., Hassler, B. & Jentoft, S. (2015). Marine Environmental Governance in Europe: Problems and Opportunities (1ed.). In: Michael Gilek and Kristine Kern (Ed.), Governing Europe's Marine Environment: Europeanization of Regional Seas or Regionalization of EU Policies? (pp. 249-264). Farnham: Ashgate
UPPBASER - Understanding Past and Present Baltic Sea Ecosystem Response - background for a sustainable future [34/2013_OSS]; Södertörn University; Publications
Andrén, E., van Wirdum, F., Norbäck Ivarsson, L., Lönn, M., Moros, M. & Andrén, T. (2020). Medieval versus recent environmental conditions in the Baltic Proper, what was different a thousand years ago?. Palaeogeography, Palaeoclimatology, Palaeoecology, 555, Article ID 109878. Norbäck Ivarsson, L. (2020). Tracing environmental change and human impact as recorded in sediments from coastal areas of the northwestern Baltic Proper. (Doctoral dissertation). Huddinge: Södertörns högskolaNorbäck Ivarsson, L., Andrén, T., Moros, M., Andersen, T. J., Lönn, M. & Andrén, E. (2019). Baltic Sea Coastal Eutrophication in a Thousand Year Perspective. Frontiers in Environmental Science, 7, Article ID 88. van Wirdum, F., Andrén, E., Wienholz, D., Kotthoff, U., Moros, M., Fanget, A.-S. -., . . . Andrén, T. (2019). Middle to late holocene variations in salinity and primary productivity in the central Baltic Sea: A multiproxy study from the landsort deep. Frontiers in Marine Science, 6, Article ID 51. Ning, W., Nielsen, A., Norbäck Ivarsson, L., Jilber, T., Åkesson, C., Slomp, C., . . . Filipsson, H. (2018). Anthropogenic and climatic impacts on a coastal environment in the Baltic Sea over the last 1000 years. Anthropocene, 21, 66-79Kotthoff, U., Groeneveld, J., Ash, J., Fanget, A.-S., Krupinski, N., Peyron, O., . . . Bauersachs, T. (2017). Reconstructing Holocene temperature and salinity variations in the western Baltic Sea region: a multi-proxy comparison from the Little Belt (IODP Expedition 347, Site M0059). Biogeosciences, 14, 5607-5632Andrén, E., Telford, R. J. & Jonsson, P. (2017). Reconstructing the history of eutrophication and quantifying total nitrogen reference conditions in Bothnian Sea coastal waters. Estuarine, Coastal and Shelf Science, 198, 320-328Andrén, E. & Andrén, T. (2014). Syrefria bottnar - orsakade av klimat, människa eller både och?. Havsutsikt (2), 12-14
Late Pleistocene and Holocene climate forcing on the Baltic Sea [75/2014_OSS]; Södertörn University; Publications
Sanyal, A., Larsson, J., van Wirdum, F., Andrén, T., Moros, M., Lönn, M. & Andrén, E. (2022). Not dead yet: Diatom resting spores can survive in nature for several millennia. American Journal of Botany, 67-82Hyttinen, O., Quintana Krupinski, N., Bennike, O., Wacker, L., Filipsson, H. L., Obrochta, S., . . . Kotilainen, A. T. (2021). Deglaciation dynamics of the Fennoscandian Ice Sheet in the Kattegat, the gateway between the North Sea and the Baltic Sea Basin. Boreas, 50(2), 351-368Warnock, J., Andrén, E., Juggins, S., Lewis, J., Ryves, D. B., Andrén, T. & Weckström, K. (2020). A high‐resolution diatom‐based Middle and Late Holocene environmental history of the Little Belt region, Baltic Sea. Boreas (1), 1-16Bathmann, U., Schubert, H., Andrén, E., Tuomi, L., Radziejewska, T., Kulinski, K. & Chubarenko, I. (2020). Editorial: Living Along Gradients: Past, Present, Future. Frontiers in Marine Science, 6, Article ID 801. Andrén, E., van Wirdum, F., Norbäck Ivarsson, L., Lönn, M., Moros, M. & Andrén, T. (2020). Medieval versus recent environmental conditions in the Baltic Proper, what was different a thousand years ago?. Palaeogeography, Palaeoclimatology, Palaeoecology, 555, Article ID 109878. Jørgensen, B. B., Andrén, T. & Marshall, I. P. (2020). Sub-seafloor biogeochemical processes and microbial life in the Baltic Sea. Environmental Microbiology, 22(5), 1688-1706Norbäck Ivarsson, L., Andrén, T., Moros, M., Andersen, T. J., Lönn, M. & Andrén, E. (2019). Baltic Sea Coastal Eutrophication in a Thousand Year Perspective. Frontiers in Environmental Science, 7, Article ID 88. Stepanova, A., Obrochta, S., Quintana Krupinski, N. B., Hyttinen, O., Kotilainen, A. & Andrén, T. (2019). Late Weichselian to Holocene history of the Baltic Sea as reflected in ostracod assemblages. Boreas, 48(3), 761-778Mhatre, S. S., Kaufmann, S., Marshall, I. P., Obrochta, S., Andrén, T., Jørgensen, B. B. & Lomstein, B. A. (2019). Microbial biomass turnover times and clues to cellular protein repair in energy-limited deep Baltic Sea sediments. FEMS Microbiology Ecology, 95(6), Article ID fiz068. van Wirdum, F., Andrén, E., Wienholz, D., Kotthoff, U., Moros, M., Fanget, A.-S. -., . . . Andrén, T. (2019). Middle to late holocene variations in salinity and primary productivity in the central Baltic Sea: A multiproxy study from the landsort deep. Frontiers in Marine Science, 6, Article ID 51.
Seaside - A multidisciplinary study of maritime environmental history [55/2017_OSS]; Södertörn University; Publications
Katrantsiotis, C., Vinogradova, O., Dahl, M., Palm, V., Rönnby, J., Gaillard, M.-J., . . . Andrén, E. (2025). Holocene shoreline displacement, land-cover change and human settlement distribution on the southeast coast of Sweden. Journal of Quaternary Science, 40(1), 124-140Vinogradova, O., Gaillard, M.-J., Andrén, E., Palm, V., Rönnby, J., Dahl, M., . . . Andrén, T. (2024). 3000 Years of past regional and local land-use and land-cover change in the southeastern Swedish coastal area: Early human-induced increases in landscape openness as a potential nutrient source to the Baltic Sea coastal waters. The Holocene, 34(1), 56-73Andrén, E., Vinogradova, O., Lönn, M., Belle, S., Dahl, M., Palm, V., . . . Andrén, T. (2024). Modern land use changes drive shifts in nutrient cycling and diatom assemblages in the Baltic Sea coastal zone: A millennial perspective with a case study from Gamlebyviken, Swedish east coast. Quaternary Science Reviews, 346, Article ID 109058. Katrantsiotis, C., Dahl, M., Palm, V., Rönnby, J., Andrén, T. & Andrén, E. (2023). Holocene relative sea level changes in the Vastervik-Gamlebyviken region on the southeast coast of Sweden, southern Baltic Sea. Boreas, 52(2), 206-222
REVIVE – Genomic signatures of diatom evolution on revived diatoms from natural archives [42/2019_OSS]; Södertörn UniversityPHYTOREV: A coordinated effort to understand genomic changes in revived diatom and phytoplankton populations from Baltic Sea sediments in light of environmental change [21-RN-0003_OSS]; Södertörn UniversityClimate change mitigation capacity of Swedish coastal seascapes [2021-01280_Formas]; Södertörn University; Publications
Dahl, M., Asplund, M. E., Björk, M., Bergman, S., Braun, S., Forsberg, S., . . . Gullström, M. (2025). Evaluating seagrass lipid biomarkers as indicator for organic carbon provenance and storage capacity in Zostera marina (L.) sediments. Science of the Total Environment, 959, Article ID 178324.
Climate change mitigation capacity of the Baltic coastal seascape: identification of hotspot environments for coastal blue carbon sequestration and guidance for sustainable management of the Baltic coastal landscapes under global change (CLIM-SCAPE) [21-GP-0005_OS]; Södertörn University; Publications
Dahl, M., Asplund, M. E., Björk, M., Bergman, S., Braun, S., Forsberg, S., . . . Gullström, M. (2025). Evaluating seagrass lipid biomarkers as indicator for organic carbon provenance and storage capacity in Zostera marina (L.) sediments. Science of the Total Environment, 959, Article ID 178324. Dahl, M., Asplund, M. E., Bergman, S., Björk, M., Braun, S., Löfgren, E., . . . Gullström, M. (2023). First assessment of seagrass carbon accumulation rates in Sweden: A field study from a fjord system at the Skagerrak coast. PLOS Climate, 2(1), Article ID e0000099. Krause-Jensen, D., Gundersen, H., Björk, M., Gullström, M., Dahl, M., Asplund, M. E., . . . Hancke, K. (2022). Nordic Blue Carbon Ecosystems: Status and Outlook. Frontiers in Marine Science, 9, Article ID 847544.
Submarine Landslides and Potential Tsunami Events in the Baltic Sea: Enhancing Geohazard Understanding for Submerged and Coastal Infrastructures; Södertörn University
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0002-6763-1697

Search in DiVA

Show all publications