sh.sePublikationer
Ändra sökning
Länk till posten
Permanent länk

Direktlänk
BETA
Publikationer (10 of 103) Visa alla publikationer
Yada, S., Bagheri, S., Hansson, J., Do-Quang, M., Lundell, F., Van Der Wijngaart, W. & Amberg, G. (2019). Droplet leaping governs microstructured surface wetting. Soft Matter, 15(46), 9528-9536
Öppna denna publikation i ny flik eller fönster >>Droplet leaping governs microstructured surface wetting
Visa övriga...
2019 (Engelska)Ingår i: Soft Matter, ISSN 1744-683X, E-ISSN 1744-6848, Vol. 15, nr 46, s. 9528-9536Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Microstructured surfaces that control the direction of liquid transport are not only ubiquitous in nature, but they are also central to technological processes such as fog/water harvesting, oil-water separation, and surface lubrication. However, a fundamental understanding of the initial wetting dynamics of liquids spreading on such surfaces is lacking. Here, we show that three regimes govern microstructured surface wetting on short time scales: spread, stick, and contact line leaping. The latter involves establishing a new contact line downstream of the wetting front as the liquid leaps over specific sections of the solid surface. Experimental and numerical investigations reveal how different regimes emerge in different flow directions during wetting of periodic asymmetrically microstructured surfaces. These insights improve our understanding of rapid wetting in droplet impact, splashing, and wetting of vibrating surfaces and may contribute to advances in designing structured surfaces for the mentioned applications.

Ort, förlag, år, upplaga, sidor
Royal Society of Chemistry, 2019
Nyckelord
Drops, Liquids, Microstructure, Petroleum transportation, Micro-structured surfaces, Numerical investigations, Oil water separation, Short time scale, Structured surfaces, Technological process, Vibrating surface, Wetting dynamics, Wetting
Nationell ämneskategori
Fysikalisk kemi
Identifikatorer
urn:nbn:se:sh:diva-39596 (URN)10.1039/c9sm01854a (DOI)000502539900011 ()2-s2.0-85075748095 (Scopus ID)
Forskningsfinansiär
Vetenskapsrådet, 2015-04019
Tillgänglig från: 2019-12-13 Skapad: 2019-12-13 Senast uppdaterad: 2020-01-03Bibliografiskt granskad
Lee, Y., Matsushima, N., Yada, S., Nita, S., Kodama, T., Amberg, G. & Shiomi, J. (2019). Revealing How Topography of Surface Microstructures Alters Capillary Spreading. Scientific Reports, 9(1), Article ID 7787.
Öppna denna publikation i ny flik eller fönster >>Revealing How Topography of Surface Microstructures Alters Capillary Spreading
Visa övriga...
2019 (Engelska)Ingår i: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 9, nr 1, artikel-id 7787Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Wetting phenomena, i.e. the spreading of a liquid over a dry solid surface, are important for understanding how plants and insects imbibe water and moisture and for miniaturization in chemistry and biotechnology, among other examples. They pose fundamental challenges and possibilities, especially in dynamic situations. The surface chemistry and micro-scale roughness may determine the macroscopic spreading flow. The question here is how dynamic wetting depends on the topography of the substrate, i.e. the actual geometry of the roughness elements. To this end, we have formulated a toy model that accounts for the roughness shape, which is tested against a series of spreading experiments made on asymmetric sawtooth surface structures. The spreading speed in different directions relative to the surface pattern is found to be well described by the toy model. The toy model also shows the mechanism by which the shape of the roughness together with the line friction determines the observed slowing down of the spreading.

Ort, förlag, år, upplaga, sidor
Nature Publishing Group, 2019
Nationell ämneskategori
Tribologi (ytteknik omfattande friktion, nötning och smörjning)
Identifikatorer
urn:nbn:se:sh:diva-38289 (URN)10.1038/s41598-019-44243-x (DOI)000468859400002 ()31127161 (PubMedID)2-s2.0-85066112839 (Scopus ID)
Tillgänglig från: 2019-06-11 Skapad: 2019-06-11 Senast uppdaterad: 2019-06-13Bibliografiskt granskad
Albernaz, D. L., Do-Quang, M., Hermanson, J. C. & Amberg, G. (2017). Droplet deformation and heat transfer in isotropic turbulence. Journal of Fluid Mechanics, 820, 61-85
Öppna denna publikation i ny flik eller fönster >>Droplet deformation and heat transfer in isotropic turbulence
2017 (Engelska)Ingår i: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 820, s. 61-85Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The heat and mass transfer of deformable droplets in turbulent flows is crucial. to a wide range of applications, such as cloud dynamics and internal combustion engines. This study investigates a single droplet undergoing phase change in isotropic turbulence using numerical simulations with a hybrid lattice Boltzmann scheme. Phase separation is controlled by a non-ideal equation of state and density contrast is taken into consideration. Droplet deformation is caused by pressure and shear stress at the droplet interface. The statistics of thermodynamic variables are quantified and averaged over both the liquid and vapour phases. The occurrence of evaporation and condensation is correlated to temperature fluctuations, surface tension variation and turbulence intensity. The temporal spectra of droplet deformations are analysed and related to the droplet surface area. Different modes of oscillation are clearly identified from the deformation power spectrum for low Taylor Reynolds number Re, whereas nonlinearities are produced with the increase of Re A, as intermediate frequencies are seen to overlap. As an outcome, a continuous spectrum is observed, which shows a decrease in the power spectrum that scales as similar to f(-3) Correlations between the droplet Weber number, deformation parameter, fluctuations of the droplet volume and thermodynamic variables are also developed.

Ort, förlag, år, upplaga, sidor
Cambridge University Press, 2017
Nyckelord
condensation/evaporation, drops, isotropic turbulence
Nationell ämneskategori
Strömningsmekanik och akustik
Identifikatorer
urn:nbn:se:sh:diva-32994 (URN)10.1017/jfm.2017.194 (DOI)000400824400006 ()2-s2.0-85018404584 (Scopus ID)
Forskningsfinansiär
Vetenskapsrådet, VR2010-3938Vetenskapsrådet, VR2011-5355EU, FP7, Sjunde ramprogrammet, 312763
Tillgänglig från: 2017-06-29 Skapad: 2017-06-29 Senast uppdaterad: 2020-04-01Bibliografiskt granskad
Shen, B., Yamada, M., Hidaka, S., Liu, J., Shiomi, J., Amberg, G., . . . Takata, Y. (2017). Early Onset of Nucleate Boiling on Gas-covered Biphilic Surfaces. Scientific Reports, 7, Article ID 2036.
Öppna denna publikation i ny flik eller fönster >>Early Onset of Nucleate Boiling on Gas-covered Biphilic Surfaces
Visa övriga...
2017 (Engelska)Ingår i: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 7, artikel-id 2036Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

For phase-change cooling schemes for electronics, quick activation of nucleate boiling helps safeguard the electronics components from thermal shocks associated with undesired surface superheating at boiling incipience, which is of great importance to the long-term system stability and reliability. Previous experimental studies show that bubble nucleation can occur surprisingly early on mixed-wettability surfaces. In this paper, we report unambiguous evidence that such unusual bubble generation at extremely low temperatures-even below the boiling point-is induced by a significant presence of incondensable gas retained by the hydrophobic surface, which exhibits exceptional stability even surviving extensive boiling deaeration. By means of high-speed imaging, it is revealed that the consequently gassy boiling leads to unique bubble behaviour that stands in sharp contrast with that of pure vapour bubbles. Such findings agree qualitatively well with numerical simulations based on a diffuse-interface method. Moreover, the simulations further demonstrate strong thermocapillary flows accompanying growing bubbles with considerable gas contents, which is associated with heat transfer enhancement on the biphilic surface in the low-superheat region.

Ort, förlag, år, upplaga, sidor
Nature Publishing Group, 2017
Nationell ämneskategori
Maskinteknik
Identifikatorer
urn:nbn:se:sh:diva-32995 (URN)10.1038/s41598-017-02163-8 (DOI)000401511100043 ()28515431 (PubMedID)2-s2.0-85019418602 (Scopus ID)
Tillgänglig från: 2017-06-29 Skapad: 2017-06-29 Senast uppdaterad: 2020-03-24Bibliografiskt granskad
Wang, Y., Do-Quang, M. & Amberg, G. (2017). Impact of viscoelastic droplets. Journal of Non-Newtonian Fluid Mechanics, 243, 38-46
Öppna denna publikation i ny flik eller fönster >>Impact of viscoelastic droplets
2017 (Engelska)Ingår i: Journal of Non-Newtonian Fluid Mechanics, ISSN 0377-0257, E-ISSN 1873-2631, Vol. 243, s. 38-46Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We conduct numerical experiments on viscoelastic droplets hitting a flat solid surface. The results present time-resolved non-Newtonian stresses acting in the droplet. Comparing with the simulation of the impact of a Newtonian droplet, the effects of viscoelasticity on droplet behaviors such as splashing, the maximum spreading diameter and deformation are analyzed. With detailed information on the contact line region, we demonstrate how the contact line behaves according to the transition of the fluid property from elasticity dominated to shear-thinning dominated when a droplet expands and contracts on the substrate. The propose of this work is to discuss whether and how the elasticity in an impinging droplet takes effect.

Ort, förlag, år, upplaga, sidor
Elsevier, 2017
Nyckelord
Droplet impact, Viscoelasticity, Contact line, Diffuse interface, Dynamic wetting
Nationell ämneskategori
Strömningsmekanik och akustik
Identifikatorer
urn:nbn:se:sh:diva-32996 (URN)10.1016/j.jnnfm.2017.03.003 (DOI)000401379500004 ()2-s2.0-85016417160 (Scopus ID)
Tillgänglig från: 2017-06-29 Skapad: 2017-06-29 Senast uppdaterad: 2020-04-01Bibliografiskt granskad
Nour, Z. M., Amberg, G. & Do-Quang, M. (2017). Kinematics and dynamics of suspended gasifying particle. Acta Mechanica, 228(3), 1135-1151
Öppna denna publikation i ny flik eller fönster >>Kinematics and dynamics of suspended gasifying particle
2017 (Engelska)Ingår i: Acta Mechanica, ISSN 0001-5970, E-ISSN 1619-6937, Vol. 228, nr 3, s. 1135-1151Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The effect of gasification on the dynamics and kinematics of immersed spherical and non-spherical solid particles have been investigated using the three-dimensional lattice Boltzmann method. The gasification was performed by applying mass injection on particle surface for three cases: flow passing by a fixed sphere, rotating ellipsoid in simple shear flow, and a settling single sphere in a rectangular domain. In addition, we have compared the accuracy of employing two different fluid-solid interaction methods for the particle boundary. The validity of the gasification model was studied by comparing computed the mass flux from the simulation and the calculated value on the surface of the particle. The result was used to select a suitable boundary method in the simulations combined with gasification. Moreover, the reduction effect of the ejected mass flux on the drag coefficient of the fixed sphere have been validated against previous studies. In the case of rotating ellipsoid in simple shear flow with mass injection, a decrease on the rate of rotation was observed. The terminal (maximum) velocity of the settling sphere was increased by increasing the ratio of radial flux from the particle boundary.

Ort, förlag, år, upplaga, sidor
Springer, 2017
Nationell ämneskategori
Maskinteknik
Identifikatorer
urn:nbn:se:sh:diva-32451 (URN)10.1007/s00707-016-1748-5 (DOI)000395107300021 ()2-s2.0-84995783715 (Scopus ID)
Tillgänglig från: 2017-04-28 Skapad: 2017-04-28 Senast uppdaterad: 2020-03-20Bibliografiskt granskad
Wang, Y., Amberg, G. & Carlson, A. (2017). Local dissipation limits the dynamics of impacting droplets on smooth and rough substrates. Physical Review Fluids, 2(3), Article ID 033602.
Öppna denna publikation i ny flik eller fönster >>Local dissipation limits the dynamics of impacting droplets on smooth and rough substrates
2017 (Engelska)Ingår i: Physical Review Fluids, E-ISSN 2469-990X, Vol. 2, nr 3, artikel-id 033602Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

A droplet that impacts onto a solid substrate deforms in a complex dynamics. To extract the principal mechanisms that dominate this dynamics, we deploy numerical simulations based on the phase field method. Direct comparison with experiments suggests that a dissipation local to the contact line limits the droplet spreading dynamics and its scaled maximum spreading radius beta(max). By assuming linear response through a drag force at the contact line, our simulations rationalize experimental observations for droplet impact on both smooth and rough substrates, measured through a single contact line friction parameter mu(f). Moreover, our analysis shows that dissipation at the contact line can limit the dynamics and we describe beta(max) by the scaling law beta(max) similar to (Re mu(l)/mu(f))(1/2) that is a function of the droplet viscosity (mu(l)) and its Reynolds number (Re).

Ort, förlag, år, upplaga, sidor
American Physical Society, 2017
Nationell ämneskategori
Maskinteknik
Identifikatorer
urn:nbn:se:sh:diva-32450 (URN)10.1103/PhysRevFluids.2.033602 (DOI)000399155400001 ()2-s2.0-85020027987 (Scopus ID)
Tillgänglig från: 2017-04-28 Skapad: 2017-04-28 Senast uppdaterad: 2020-03-26Bibliografiskt granskad
Liu, J., Amberg, G. & Do-Quang, M. (2016). Diffuse interface method for a compressible binary fluid. Physical Review E. Statistical, Nonlinear, and Soft Matter Physics, 93(1), Article ID 013121.
Öppna denna publikation i ny flik eller fönster >>Diffuse interface method for a compressible binary fluid
2016 (Engelska)Ingår i: Physical Review E. Statistical, Nonlinear, and Soft Matter Physics, ISSN 1539-3755, E-ISSN 1550-2376, Vol. 93, nr 1, artikel-id 013121Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Multicomponent, multiphase, compressible flows are very important in real life, as well as in scientific research, while their modeling is in an early stage. In this paper, we propose a diffuse interface model for compressible binary mixtures, based on the balance of mass, momentum, energy, and the second law of thermodynamics. We show both analytically and numerically that this model is able to describe the phase equilibrium for a real binary mixture (CO2 + ethanol is considered in this paper) very well by adjusting the parameter which measures the attraction force between molecules of the two components in the model. We also show that the calculated surface tension of the CO2 + ethanol mixture at different concentrations match measurements in the literature when the mixing capillary coefficient is taken to be the geometric mean of the capillary coefficient of each component. Three different cases of two droplets in a shear flow, with the same or different concentration, are simulated, showing that the higher concentration of CO2 the smaller the surface tension and the easier the drop deforms.

Ort, förlag, år, upplaga, sidor
American Physical Society, 2016
Nationell ämneskategori
Fysik
Identifikatorer
urn:nbn:se:sh:diva-30149 (URN)10.1103/PhysRevE.93.013121 (DOI)000368517500016 ()2-s2.0-84955590690 (Scopus ID)
Tillgänglig från: 2016-02-18 Skapad: 2016-06-01 Senast uppdaterad: 2017-11-30Bibliografiskt granskad
Kekesi, T., Amberg, G. & Wittberg, L. P. (2016). Drop deformation and breakup in flows with shear. Chemical Engineering Science, 140, 319-329
Öppna denna publikation i ny flik eller fönster >>Drop deformation and breakup in flows with shear
2016 (Engelska)Ingår i: Chemical Engineering Science, ISSN 0009-2509, E-ISSN 1873-4405, Vol. 140, s. 319-329Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

A Volume of Fluid (VOF) method is applied to study the deformation and breakup of a single liquid drop in shear flows superimposed on uniform flow. The effect of shearing on the breakup mechanism is investigated as a function of the shear rate. Sequential images are compared for the parameter range studied; density ratios of liquid to gas of 20, 40, and 80, viscosity ratios in the range 0.5-50, Reynolds numbers between 20, a constant Weber number of 20, and the non-dimensional shear rate of the flow G = 0-2.1875. It is found that while shear breakup remains similar for all values of shear rate considered, other breakup modes observed for uniform flows are remarkably modified with increasing shear rate. The time required for breakup is significantly decreased in strong shear flows. A simple model predicting the breakup time as a function of the shear rate and the breakup time observed in uniform flows is suggested.

Ort, förlag, år, upplaga, sidor
Elsevier, 2016
Nyckelord
Drop deformation, Drop breakup, Shear flow, Volume of Fluid (VOF)
Nationell ämneskategori
Fysik
Identifikatorer
urn:nbn:se:sh:diva-30135 (URN)10.1016/j.ces.2015.10.019 (DOI)000367117300028 ()2-s2.0-84946594865 (Scopus ID)
Tillgänglig från: 2016-01-21 Skapad: 2016-06-01 Senast uppdaterad: 2017-11-30Bibliografiskt granskad
Wang, Y., Gratadeix, A., Do-Quang, M. & Amberg, G. (2016). Events and conditions in droplet impact: A phase field prediction. International Journal of Multiphase Flow, 87, 54-65
Öppna denna publikation i ny flik eller fönster >>Events and conditions in droplet impact: A phase field prediction
2016 (Engelska)Ingår i: International Journal of Multiphase Flow, ISSN 0301-9322, E-ISSN 1879-3533, Vol. 87, s. 54-65Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The phenomenon of droplet impact on a smooth, flat, partially wetted surface is studied by phase field simulation. A map of the different impact regimes is constructed for Reynolds numbers ranging from Re = 9 to Re = 9 x 10(4), and Ohnesorge numbers ranging from Oh = 3.3 x 10(-4) to Oh = 1.05. The results are compared with previous experiments from several aspects such as gas bubble entrapment, spreading radius and liquid sheet splashing, etc. The simulation proposes event predictions that are consistent with previous experiments. Our results and discussions give an overview of important characteristics during droplet impact, and provide insights on the droplet spreading after impact.

Nyckelord
Droplet impact, Phase field method, Simulation, Splashing, Gas entrapment
Nationell ämneskategori
Maskinteknik
Identifikatorer
urn:nbn:se:sh:diva-31320 (URN)10.1016/j.ijmultiphaseflow.2016.08.009 (DOI)000386645300006 ()2-s2.0-84987942203 (Scopus ID)
Tillgänglig från: 2016-12-08 Skapad: 2016-12-08 Senast uppdaterad: 2018-07-05Bibliografiskt granskad
Organisationer
Identifikatorer
ORCID-id: ORCID iD iconorcid.org/0000-0003-3336-1462

Sök vidare i DiVA

Visa alla publikationer