Systemutveckling av Trouble Report

– Hur väljer och prioriterar man tekniska funktioner i vidareutveckling av ett etablerat system?

Av: Anna Tjörnebro
Handledare: Helge Hüttenrauch
System development of Trouble Report

– How to choose and prioritize technical functions when redeveloping an established system?

Abstract

As part of an internship at Ericsson, this report was written to enhance the understanding of how it is to develop a system that is well established at the workplace. To improve an already existing system is not always as easy as many developers may think. In this report the pros and cons of developing an already existing system has been researched and analyzed. Do note that the results are only from one development of a specific system and that comparison of other developments has been made from other reports and not from experiencing it firsthand. It was found that the choices made can have an impact on further developing and it is important to write down what has been done. Writing down why you choose to do something may help you further down the process why you did what you did.

Keywords

System development, Interaction design, Human computer interaction, web applications
Sammanfattning

Som en del av ett praktiskt examensarbete, har denna rapport skrivits för att öka förståelsen av hur det är vidareutveckla ett befintligt och etablerat system. Att förbättra ett redan befintligt system är inte alltid så lätt som många systemutvecklare har uppfattning om. I denna rapport har fördelar och nackdelar med utvecklingen av ett redan befintligt system undersömts och analyserats med hjälp av egna upplevelser. Notera att resultatet är framtaget från en enda upplevelse av en specifik utveckling av ett system. Detta betyder att jämförelser endast gjorts med andra rapporteringar av liknande fall och inte med egen erfarenhet då bara ett system utvecklats under denna tid. Resultatet visar att det är viktigt att du antecknar dina tankar kring de val du gör då det kan hjälpa dig med andra val senare i projektets process.

Nyckelord

System utveckling, Interaktionsdesign, Människa och datainteraktion, webbapplikationer
Begreppsdefinition

Nedan listats begrepp som ibland har behövt ytterligare förklaringar. Visa begrepp är i form av förkortningar och då har jag ibland enbart skrivit vad de betyder och inte förklarat mer då det kan komma mer förklaringar senare i rapporten.

MHO = Modification Handling Offices, olika avdelningar som finns på Ericsson. Skrivs oftast som MHO+namn t.ex. MHO RADIOSW.

TR = Trouble Report, system där man anmäler problem med program

TRHA = Trouble Report History Application, utvecklande applikation som jag skapat utifrån TR-systemet

IE = Internet Explorer, webbläsare

SQL = Structure query language, används till databaserna som man skapar

HTML = Hypertext markup language, används för att ge struktur för den applikation eller hemsida man skapar

PHP = Serverbaserat scriptspråk som används till funktioner i den struktur man gjort i html

CSS = Cascading style sheets, används för att formge strukturen gjord i html

MDI = Människa-datainteraktion
Innehållsförteckning

1 Bakgrund .. 1
 1.1 Ericsson AB ... 1
 1.2 Trouble report ... 1
 1.3 Syfte, mål och frågeställning .. 2
 1.4 Avgränsning ... 3

2. Tidigare forskning .. 4
 2.1 Risker i systemutveckling ... 4
 2.2 Människa-datainteraktion .. 4
 2.3 Projekt inom systemutveckling .. 5

3. Metod .. 6
 3.1 Val av metod .. 6
 3.2 ”Ostrukturerade observationer” .. 6
 3.3 Personlig forskningsloggbok .. 6
 3.4 Övriga metoder .. 7
 3.5 Metodkritik ... 7

4 Genomförande ... 7
 4.1 Analyser och första skisser .. 7
 4.1.1 PACT-Analysen .. 8
 4.1.2 Skisser ... 9
 4.1.3 Lo-fi och Hi-fi prototyper ... 10
 4.2 Personlig forskningsloggbok ... 11
 4.3 Ostrukturerade observationer .. 13
 4.3.1 Observation av anställdas TR-system vanor .. 13
 4.3.2 Feedbackmöte ... 14
 4.4 Design och tekniska funktionsval ... 16

5. Resultat .. 18
 5.1 Ostrukturerad observation .. 18
 5.2 Personlig forskningsloggbok .. 18

6. Slutsats och diskussion ... 19
 6.1 Frågeställningens svar .. 20
6.2 Förslag till fortsatta studier ... 20
7. Referenser ... 21
8. Bilagor .. 22
 Bilaga A - Personlig forskningsloggbok .. 22
 Bilaga B - Observations frågor och svar .. 24
1 Bakgrund

1.1 Ericsson AB
Ericsson är ett ledande företag inom telekommunikation, mobila enheter och nätverkstjänster. Ericsson grundades 1876 och har i dag över 110 000 anställda världen över, där runt 17 000 är anställda i Sverige. Företagets grundmål är att med ett professionellt och respektfullt framförande försöka ha god kontakt när man arbetar med andra. Då Ericsson har många anställda världen över krävs det program som alla kan använda sig av och förstå. Jag har utfört mitt examensarbete på Ericsson AB på mobila radioenheten, dock har jag arbetat mer som en utomstående konsult och har inte arbetat med de uppgifter som utförts på mobila radioenheten. Min arbetstitel på Ericsson har varit systemutvecklare där jag utvecklat ett av systemen som mobila radioenheten använder sig av.

1.2 Trouble report

4 Kedzierski B.I.

- Vem som först skapade TR:en. Namn, kontaktuppgifter etc.
- Vad problemet med TR:en är ska beskrivas i detalj.
- Vilken prioritet TR:en har.
- Vart problemet uppstod, i vilket system, internt eller hos kund.
- Vem som upptäckte problemet, om det är TR skaparen eller extern kund som upptäckt problemet.

Listan fortsätter ännu längre, men denna information är de viktigaste som bör finnas med enligt Ericssons modeller. All information om hur man ska hantera TR och hur man skapar dem finns att hitta i de många PDF-dokumenten som Ericsson har till sina anställda. När TR:en väl skapats så skickas den iväg till en ny anställd (TR-användare) som ska analysera TR:en så att den är äkta, dessutom har denna person i uppgift att kolla TR:en så att den inte är fel. Skulle TR:en vara felskriven skickas den tillbaka till personen som skapade den och man får rätta till TR-dokumentet och skicka iväg det igen. Uppgifter personen har att analyser i TR:en är:

- Finns det dubbletter av den TR som skickats?
- Är TR problemet redan löst?
- Tittar om TR problemet kommer lösas i nästa planerade uppgradering av programmet
- Är TR:en ifylld på rätt sätt?

Detta ”bollande” fram och tillbaka till olika personer och avdelningar kan pågå under flera dagar, veckor eller månader ända fram till dess att någon löser problemet. När det har hänt skickas godkännande av problemlösning till skaparen eller annan behörig person, som godkänner och avsluta TR:en. All information om vad som hänt med TR:en samlas i TR dokumentet under historikdelen. Det är historikdelen som ska vidareutvecklas och ligger till grund för denna rapport.

1.3 Syfte, mål och frågeställning

Målet med Examensarbetet är att vidareutveckla en del av ett redan befintligt och etablerat system genom att skapa en extern applikation som med hjälp av en representativ grafisk

Rapporten har gett en större förståelse i de val och prioriteringar som krävs i vidareutvecklingen av ett redan etablerat system med fokus på de tekniska funktioner som kan komma att behövas i den externa applikationen. Dessutom har jag försökt få fram ett ramverk på hur man lättare kan göra dessa val och hur man väljer ”rätt”, dvs. hur man gör ett val som inte har negativa konsekvenser. Utöver detta har jag titta på de tankegångar som sker under projektprocessen.

1.4 Avgränsning

Projektet i detta examensarbete var till en början stort och brett och jag har tillsammans med handledare fått diskutera fram olika avgränsningar för projektet. För att hinna med så mycket som möjligt inom rimlig tid och för att uppnå det med bästa kvalitet, valde jag att ta bort implementationen i projektet. Nedan är detaljer på vad som gjorts och vad som inte gjorts i detta projekt.

Följande punkter har utförts i projektet:

- Analys av TR-systemet för vidare utveckling.
- Skapa designkoncept för utveckling av systemet
- Ta beslut om den ska vara extern eller inbyggd i systemet.
- Skapa applikation lokalt på datorn genom att skapa egna databaser, Html-kodning och annan programmering.
- Analyser och utföra observationer/diskussionsmöten med användare av TR-systemet.
- Tagit beslut om vilka funktioner som ska finnas
- Sammanställa rapport för hur applikationen fungerar
- Förslag på vad nästa steg i utvecklingen är.

Följande punkter har inte behandlats under detta projekt:

- Användartester med prototyper
- Implementering av applikationen till det befintliga TR-systemet.
- Slutliga tester för att se om det finns buggar i den externa applikationen.

Man kan undra varför implementeringsfasen blev borttagen ur projektet och varför det valet gjordes. Utifrån den tidigare tidsplanen skulle implementeringsfasen vara en del av projektet. Då
denna studie ska undersöka val och prioriteringar i tekniska funktioner behöver man dock inte ha med implementationen då valen sker i tidigare del av projektet. Därför försvann också slutliga tester eftersom detta i så fall skulle ske i implementationen.

2. Tidigare forskning

När man pratar om systemutveckling och människa-datainteraktion, talas det mycket om metoder och ”rätt” tillvägagångsätt. När man utvecklar system bör man ta hänsyn till många aspekter, däribland användaren. Det har dock inte alltid varit så och när man i dag utvecklar system så gör man det i form av större projekt\(^6\). Att arbeta projektorienterat har i företagsvärlden ökat, men siffrorna för lyckade projekt är låga och därför har tidigare forskning fokuserat på varför man misslyckas med projekt mer än vad som gör lyckade projekt\(^7\).

Kedzierski t.ex. skriver att projekt som inte har bra kommunikation har större chans att misslyckas\(^8\). Men mer detaljerat om vilka moment som faktiskt gör att projekt misslyckas tas inte upp.

2.1 Risker i systemutveckling.

Systemutveckling utförs mestadels i form av projekt. Oavsett projektets storlek har det inte alltid den effekt man är ute efter. Många av dagens projekt misslyckas och enligt Moor, Bekkering och Johnston är det mellan 50-80\% av projekt som inte uppnår sina mål eller deadlines\(^9\). Det finns i dag en hel del metoder och ramverk för hur man på bästa sätt utför projekt och utvecklar system men de är inte alltid till hjälp för det projekt som man själv arbetar med. Detta då inte alla ramverk är anpassade till ditt projekt. Många forskare fokuserar på själva utvecklingsfaserna som tekniska aspekter, användartester, analyser etc. Men författarna har utöver det tittat på andra delar av större projekt, som tekniska risker och organisationsrisker\(^10\). Men även om författaren här har tänkt på fler delar så har bara en översyn av riskerna i projekt analyserats, vilket gör att mer detaljer av riskerna inte tas upp.

I den här rapporten har jag fokuserat mer på de tekniska riskaspekterna av projektet. Det finns många andra viktiga faktorer som underlättar att lyckas med projekt.

2.2 Människa-datainteraktion

Människa-datainteraktion (MDI) har inte alltid varit ett ämne som uppskattats inom systemutveckling skriver Benyon\(^11\). Men man har på senare år förstått innebörden av att använda sig av de metoderna som finns inom MDI och hur det kan underlätta och säkra ett framgångsrikt

\(^6\) R.S Moore, E. Bekkering & A.C Johnston.
\(^7\) Ibid.
\(^8\) B.I. Kedzierski.
\(^9\) R.S Moore, E. Bekkering & A.C Johnston.
\(^10\) Ibid.
\(^11\) D. Benyon.
projekt. MDI fokuserar mycket på användaren av system och hur man genom olika tester och observationer kan förbättra system utifrån användarens perspektiv. 12 Enligt DePaula tycker vissa att det är slöseri med tid, men forskning har påvisat att även om man måste ge testerna tid så blir det mindre kostnader i slutändan 13. Detta då man i tidigare skede i projektet kan hitta buggar eller problem som man fixar på en gång, istället för att behöva hitta dem i slutet av projektet.

MDI är inte bara en nödvändighet, det hjälper också systemutvecklarna att förstå användarnas behov och se hur de använder sig av de lösningar som utvecklarna skapar. Det är inte alltid så att alla lösningar fungerar som de ska när användarna testar dem. Om man då upptäcker problem i tid, så kan man med mindre kostnad och tidsförlust lösa det. Om man gör det i tid så kan man också undvika rubbningar i tidsplaneringen samt så stör det inte resten av utvecklingsfaserna.

Men MDI har också sina nackdelar förklarar Benyon 14. Det kan ta tid, speciellt om man inte har en noggrann planering eller inte följer sin planering och avviker från vad som tidigare var tänkt. Dessutom är det inte alla projekt inom systemutveckling som kan använda sig av MDI fortsätter Benyon. Detta då tester inte kan anpassas för att man har en för liten eller för stor målgrupp av användare. Om man inte utför MDI med de metoder som man har att tillhandahålla och dessutom inte använder dem på rätt sätt, så kommer MDI inte vara till någon nytta. Det kan till och med försämra eller sakta ner projekt mer än nödvändigt. 15

2.3 Projekt inom systemutveckling

I artikel har forskaren fokuserat på nedstående frågor som man försökt besvara med ett ända svar 16.

(1) What kind of activity do people engage in while working on a software system?

(2) What causes most problems during system evolution or development?

Författarens svar är: ”Communication” (kommunikation). 17 Att anta att ett enda svar kan lösa detta är det inte många som håller med författaren om, men om man redan här i texten slutar läsa så är det inte konstigt att man tycker så. För om man försätter läsa artikeln kan man se att de lägger mer grund för detta svar och förklarar varför kommunikation är viktigt i projekt i allmänhet. Dock är det visa delar som inte beskrivs ordentligt eller tagits bort helt som skulle vart av intresse att läsa.

12 Ibid, Kapitel 1.
13 R. DePaula.
14 D. Benyon.
15 Ibid, Kapitel 1 s.22.
16 BI. Kedzierski.
17 BI. Kedzierski.
Däremot förklaras tydligt vad för kommunikation som behövs och vart i leden kommunikationen kan brista. Enligt författarna är det mestadels mellan olika anställda som kommunikationen brister. Det vill säga, om en person är högre uppsatt så kan dennes kommunikation med andra ”vanliga” anställda blir sämre. Detsamma gäller om två företag samarbetar med varandra under ett projekt, då kan brister i kommunikationen mellan företagen uppstå och där av kan projekten ta längre tid.

3. Metod

3.1 Val av metod

Metoderna för detta examensarbete valdes genom jämförelser av metoderna, intervjuer, enkäter och observationer samt analys av forskningsloggbor. Valet av metoder var svårt att ta beslut om då mycket av resurserna för projektet begränsar denna studie. Metoderna valdes för att de var bäst lämpade under förutsättningarna men har använts med försiktighet.

3.2 ”Ostrukturerade observationer”

Bell definierar ostrukturerade observationer som en form av observationer som inte strukturerats i förhand med frågor eller utförande planering. Den ostrukturerade formen används då man inte har en exakt vetskap om hur observationen kommer gå till eller om observationerna kan skilja sig åt beroende på användare eller observations objekt.

Detta projekt har användbar information tagits fram genom flera ostrukturerade observationer. I examensarbete har metodstudierna blandats, så en blandning av strukturerad och ostrukturerad observation har utförts. Det vill säga att jag har tagit visa delar av strukturerade observationer genom att ha några frågor förberedda, men ändå inte lagt upp en detaljerad plan för hur observationerna ska se ut i förväg. Detta gör att jag inte kan kalla de observationerna jag gjort för strukturerade, dessutom finns det inte något som heter semistrukturerade observationer, för det hade varit en bättre definition på de observationer som har gjorts.

3.3 Personlig forskningsloggbor

En metod som jag har använt mig av är Personlig Forskningsloggbor (PF), ett verktyg för forskaren eller forskarna. Användningen av detta verktyg inom detta projekt har gett större insikt och förståelse i hur processen av systemutveckling kan se ut. Då frågan till denna rapport är att se hur prioriterar kring de val man gör väljs, så kan PF förstärka och förbättra förståelsen av hur forskare, systemutvecklare och designer faktiskt tänker. PF:en kan också förklara detaljer

18 Ibid.
20 Ibid.
21 Ibid, Kapitel 11 s.191-192
22 J. Bell, kapitel 10 s.182.
som annars kunde glömts bort i processen. PF används för att forskare ska kunna skriva ner detaljerat vad som händer under processen, vad som ändrats eller olika idéer som kommer upp när man gör någon annan uppgift i projektet.

3.4 Övriga metoder
Att analysera det system jag har utvecklat kan göras på olika sätt och kan, beroende på vad som tas fram, ge användbar information. För detta examensarbete gick en vecka åt att läsa om och förstå det TR-systemet som skulle vidareutvecklas. En vecka kan anses som lång tid men faktum är att på grund av komplexiteten av systemet och all information som man måste kunna så fick jag gå igenom det grundligt. Efter insamling av information om hur systemet fungerande, så gick jag över till att skapa inte en men två PACT-analys. PACT-analyser används för att få en bättre överblick för hur och varför ett system används, där PACT står för ”People”, ”Activities”, ”Context”, ”Technologies”.23

En av analyserna har varit en gissning på hur en PACT-analys för skapandet av originalsystemet sett ut. Den andra är för den utvecklande delen av systemet för att se om det finns några skillnader i analyserna. Utöver PACT-analys, har jag också använt mig av Lo-fi och Hi-fi prototyper.24

3.5 Metodkritik
Eftersom jag använt mig av metoder som enligt forskare kan anses opålitliga så borde jag ha med andra metoder t.ex. användartester och intervjuer, försökt att svara på rapportens frågeställning. Det skulle också vara bra om någon gjorde en större studie med fler systemutvecklare som förde loggbok över en längre period.

För att stärka validitet skulle det också kunnat göras fler observationer under längre tid och en större grupps process kunde följs under ett större projekt. Detta projekt har inte utförts i grupp eller pågått under en längre tid och därför skulle man också kunna undersöka fler projekt inom olika typer av systemutveckling.

4 Genomförande
Projektet har varit ungefär 10-15 veckor lång och jag har använt mig av olika processmetoder som varit till nytta i tidigare projekt.

4.1 Analyser och första skisser
Inför analysen av systemet behövdes fakta och information för förståelse av systemet. De dokument som hade den informationen och fakta om systemet har lästs igenom och därefter har

23 D. Benyon, kapitel 2.
24 Ibid, kapitel 8 s.184-188.
skisser skapats. Det gjordes med insikt från den handledare som jag hade på Ericsson. Handledaren hade en del idéer som han ville implementera i de skisser som skulle göras.

4.1.1 PACT-Analysen

People

Människorna som använder systemet är anställda på Ericsson, samt Ericssons kunder som totalt omfattas av cirka 8000 människor.

De Ericsson anställda som använder systemet är kunniga inom data och har goda vanor av datasystem. De Ericssonkunderna som använder systemet behöver inte veta hur TR-systemet fungerar lika bra som de anställda gör. Detta då kunderna inte använder systemet i samma utsträckning som de anställda gör.

Att sätta en specifik målgrupp för detta projekt har inte varit helt lätt, men då jag ska utveckla systemet så att andra som inte är lika vana med systemet ska kunna förstå det, har fokus legat på de kunder och de anställda som inte använder systemet lika ofta i sin arbetssituation.

Activities

Aktiviteter som är viktiga att utföra för den utveckling av system som jag ska göra är följande:

- Se var TR:en skapades.
- Se vem som skapade TR:en.
- Datum när TR:en skapas.
- Visa hur länge TR:en varit aktiv.
- Se vilka andra MHO:er som TR:en varit på.
- Se vilket TR nummer TR:en har.

Context

De som använder systemet hos Ericsson sitter i kontorslandskap där de ibland kan bli avbrutna i sina arbeten då någon kollega kommer och frågar något om sin ”egen” TR. Miljön är i större delen av tiden stressfri då TR:ar inte alltid har hög prioritering.

Technology

Då TR-systemet är skapat för att kunna användas på Internet Explorer (IE) så kommer även den externa applikationen vara anpassad att funka på IE. Detta då anställda på Ericsson till mestadels använder den webbläsaren, då den är standard på deras datorer. Eftersom det ska bli en form av
webbapplikation kommer användning av HTML, CSS etc. skrivas i skapandet av denna applikation.

4.1.2 Skisser

Figur 1. Bilden föreställer en version av skisserna som utfördes i början av projektet.

Animationen ska vara en del av en webbapplikation. Webbapplikationen ska ha en sökfunktion där man ska kunna välja olika alternativ, som visas i Figur 2. De olika alternativen är t.ex. datumintervall, antal TR:ar och vilken avdelning eller team TR:en kommer ifrån.
4.1.3 Lo-fi och Hi-fi prototyper

Lo-fi och Hi-fi är två sätt att utföra prototypskapande. Lo-fi görs i pappersformat. Detta då det fortfarande finns frågetecken kring delar av designen eller funktionerna. Dessutom kan det vara enklare för de personer som testar prototypen att förstå hur den ska fungera.

Hi-fi är när man skapar prototypen digital och använder när en klar bild av den slutliga produkten har diskuterats fram. Testerna utförs då för att ge svar på om funktionerna fungerar och för att man ska kunna se om användarna förstår prototypen i helhet.25

För detta examsarbete skapades en Lo-fi och en Hi-fi prototyp, men bara Hi-fi prototypen testades, detta då de användarna som skulle testas inte var tillgängliga och inte hade tid att utföra testerna som planerat. Hi-fi testet utfördes inte som man vanligtvis gör, där tester görs med en person i taget. Istället testades det i grupp i form av ett möte där de som använde TR-systemet dagligen fick titta och ställa frågor om prototypen. Dessutom fick de ge feedback och förslag på hur prototypen och dess funktioner kunde förbättras.

Hi-fi prototypen skapades i Adobe Edge Animate (An)26 för att på bästa sätt visa hur webbapplikationen skulle kunna se ut, som visas i Figur 3. Edge Animate användes som Hi-fi prototyp verktyg då den konverteras till HTML-kodning när filerna sparades. Detta gjorde att animeringen direkt kunde prövas i den webbläsare som var tänkt att användas till den slutliga produkten. Detta gjorde att fel i animationen kunde hittas tidigare och fixas på en gång.

25 D. Benyon, kapitel 8.
När Hi-fi prototypen hade testats, analyserades informationen och användarfeedbacken för att det senare skulle kunna anpassas och ändras i prototypen. En sammanställande lista på vad som prioriterades eller togs bort i prototypen kan ses längre ned under avsnitt 4.3.2.

![TR animation](image)

Figur 3. Här kan man se hur applikationen skulle kunna se ut.

![Figur 4](image)

Figur 4. Här ser man en layout på hur ”animationen” skulle kunna se ut när produkten är klar. Pilarna visar den orangea bollens väg

4.2 Personlig forskningsloggbok

Under examensarbetets gång har skrivande av en loggbok utförts. Här har problem och processer beskrivits i mer detalj så att jag senare i projektet har kunnat gå tillbaka och titta på varför vissa val gjordes. I loggboken nämns också eventuella idéer och funderingar som jag och andra anställda kommit på under processens gång.
Loggboken har skrivits dagligen men för att underlätta läsandet har en sammanfattning av varje vecka gjorts här. Projektet startades under en praktikkurs och övergick sedan i examensarbetet. Detta gör att inte alla processer är med i nedanstående loggbok, utan bara de viktigaste och mest relevanta delarna är beskrivna. Något annat som inte näms är observationerna då dessa gjordes löpande under de första 5-6 veckorna. Detsamma gäller processen kring skrivandet av denna rapport.

Då loggboken är lång valdes de delar ut som ger en tydlig insyn på hur projektet fungerade. Hela listan med alla veckor i turordning kan ses i bilaga A. Här nedan beskrivs de mest intressanta veckorna.

Vecka 14 Måndag 1/4 till Fredag 5/4

Analyser färdigställda och jag start skapandet av digitala (Hi-fi) prototyper. Designkomponenter skapandes under praktiken och implementeras nu i prototypen. Edge Animate används då filerna sparas bland annat som HTML, vilket gör att man kan testa animationen till applikationen i en webbläsare på en gång. Två olika digitala prototyper skapas för att ge olika varianter till användarna att välja mellan. Prototyperna färdigställdes under veckans slut.

Vecka 16 Måndag 15/4 till Fredag 19/4

Efter sista detaljerna av prototyven har skapats ska de nu presenteras på ett feedbackmöte där personal som använder TR-systemet dagligen ska få kunna ge feedback på vad som gjorts och ge förslag på vad som kan ändras och förbättras. Efter mötet analyserades svaren och prioritering av vad som ska göras härnäst skrevs ned. Dessutom prioriterades vilka funktioner som jag skulle ha med för att det skulle passa användarna på bästa sätt.

Vecka 17 Måndag 23/4 till Fredag26/4

Nu när analysen av prototyperna är gjorda så började processen med det riktiga skapandet. Då redan en lista gjorts på vilken del av kodskapandet som skulle komma först, utgick jag från listan och började skapa HTML kodning. Då applikationen ska vara på Internet Explorer (IE), måste jag anpassa koden till den webbläsaren. Då HTML 5 använts i skapandet var det inte alltid så lätt att få alla funktioner att fungera för att HTML 5 syntaxen inte stöds helt i IE. Men efter mycket om och men hittade jag några ”workaround” lösningar på internet och via de böcker som jag tidigare använt i mina kurser.

Vecka 18 Måndag 29/4 till Fredag 3/5

Här började skapandet av PHP och databasuppkopling. För att kunna skriva PHP kod behövs olika uppkopplingar till servrar och det tog lång tid innan jag fick det att fungera. I slutet av vecka hade jag fått igång allt och första kodraderna i PHP kunde skapas.

Vecka 20 Måndag 13/5 till Fredag 17/5

4.3 Ostrukturerade observationer

Under de första veckorna av projektet, började jag fundera på hur man på bästa sätt skulle kunna utföra detta projekt så att det kunde anpassas till de krav examensarbetet gav. Många tankar kretsade kring avändartester och enkäter, men då de som använder TR-systemet inte kunde avsätta en dags arbete fick jag tänka om och ta fram andra sätt att undersöka hur arbetsprocessen för en TR ser ut. Därför valdes istället observationer som gjordes ostrukturerat då olika TR ger olika information och löses på så olika sätt.

4.3.1 Observation av anställdas TR-system vanor

Observationen har utförts i en arbetsmiljö som var någorlunda lugn, jag satt bakom person A och ställde frågor när det var något som jag inte förstod eller när något var oklar. Observationen utfördes under flera dagar, då TR-problemens lösningar kan ta flera dagar att få fram.

"Jag: Då borde TR:en redan vara klar?"

A: Nej inte riktigt, för om du tittar här (pekar på skärmen) så står det att de i senare skede vill ha en fix till mjukvaran också. Men vem som ska ta hand om det är lite svårt att få fram genom informationen vi fått här.
Jag: Så vad gör man då om inte information för det finns? Hur får man fram den informationen?

A: Jo…om du ser här (pekar på skärmen igen) så finns information om vem som först skapade denna tråd (TR). Man får mejla den personer, samt så verkar det som att det kanske ska vara någon annan mjukvaruavdelning som ska ta hand om den, så jag kommer mejla dem för att skapa en diskussion och få mer insikt från annat håll. Nån på den andra avdelningen kanske förstår informationen som finns här bättre än jag.

Jag: Så hur lång tid kan detta ta då? Om du måste mejla massa människor, tar det inte längre tid?

A: Det beror på, nån dag eller två kan det ta innan jag får svar på mejl, oftast kommer man behöva skicka mer meddelanden mellan varandra och eller andra.”

4.3.2 Feedbackmöte

En annan metod som användes var en form av ”Feedbackmöten”. På mötet satt ett dussin anställda som arbetar dagligen med TR-systemet och som enligt handledaren på Ericsson kunde ge konkret feedback på prototypen. Vi satte oss i ett rum och tre versioner av prototypen visades upp och alla fick ge kommentarer på vad de såg. Nedan är en sammanställning på vad som sades under mötet.

Sammanställning av Feedback från mötet

3. Flera kategorier ska kunna väljas, kanske “Team” och inte bara avdelningar.
5. Startpunkten och slutpunkten bör vara i olika bubblor och i olika färger för att göra det mer tydligt vad som händer.
6. TR-status kan ändras under processens gång. Hur skulle det kunna illustrera i animationen.

Dessa punkter går inte alla att implementera i ramen för detta examensarbete och användarna ville ha mycket information på väldigt liten yta. Detta skulle i senare skede bli svårt att implementera, så val och tester gjordes för att se om funktionerna och designen kunde ändras. Det slutade med att punkterna 1,2, och 6 valdes bort, då dessa funktioner inte skulle kunna skapas på den utsatta tid som fanns samt att de i detta skede och för denna applikation inte var helt nödvändiga. Även om användarna ville ha de punkterna med så fanns det andra funktioner som fick prioriteras, som funktionerna i punkterna 3 till 5. En ny skiss skapades där de nya funktionerna lades till, som kan ses i Figur 5.

Figur 5. En skiss av prototypen så som den ser ut efter Feedbackmötet.
Nedan listas på alla funktioner som kommer finnas till den slutliga webbapplikationen, själv listan delas upp i två rubriker, funktioner på webbapplikationen sidor och animationens separata funktioner som beskrivs i detalj.

Webbapplikationen

- Sidor med information om TR-animationen.
- En av sidorna ska ha en sökfunktion där användaren klickar i olika alternativ t.ex. avdelning, hur många TR:ar som användaren vill se och datuminterval.
- Längst ned under sökfunktionen där val av olika alternativ väljs, finns en knapp som startar sökningen och som sedan genererar en lista av TR:ar.
- När TR:ar visas ska användaren kunna klicka på en knapp framför TR-numret som öppnar upp animationsfönstret.

Animationen

- Start och Pausknappar.
- Hover-funktion, så att när användaren drar musen över en avdelnings namn kommer mer information om avdelningen upp.
- Tillbaka-knapp.
- Hover-funktion i pausläge, så att när användaren drar musen över en TR-boll så visas mer information, t.ex. TR-nummer och vem som skapat TR:en.

4.4 Design och tekniska funktionsval

Under ett projekt som detta har flera design- och tekniska funktionsval gjorts. Att ta beslut om vad som ska användas och vad som får ”kastas” är inte alltid så enkelt som man kan tror att det är. Under detta projekt har dessa val gjorts beroende på hur feedback från prototyperna sett ut samt observationer som gjorts i användandet av det befintliga systemet. Viktigt har varit att titta på vad användarna tycker om systemet och vad som skulle förbättra det. *Vad vill användarna ha för funktioner i denna utvecklande del av systemet?*

Det första som gjordes i skapandeprocessen efter det att prototypen fått konstruktiv kritik, var att analysera dessa svar och se om några ändringar i funktioner eller design kunde göras. Som kan ses i listor i genomförandet, fanns det många idéer och funktioner som kunde vara användbara till denna applikation. *Så varför valdes vissa punkter från feedbackmötet bort och varför valde jag att behålla andra?*

1. Trace lines
 Är en funktion som skulle kunna underlätta mycket, då en boll rör sig runt på en öppen yta kan en trace line förenkla följdandet av TR-bollen. Det skulle underlätta för ögat att se vad som egentligen händer. Men enligt sökningar som jag har gjort har ingen bra och
funktionell kodlösning hittats för att kunna skapa denna funktion. Därför kommer funktionen för tillfället inte användas.

2. Val av Trace line
Eftersom punkt nummer ett ”trace lines” inte utförts var det ingen idé att be användaren att välja om den vill ha trace line. Om denna funktion fortfarande hade använt skulle det göra användaren förvirrad något jag vill förhindra.

3. Fler kategorier
I applikationen finns en form av sökfunktion där man får välja vad för TR det är som man vill se en animation på. Men under Feedbackmötet var det några som tyckte att det saknades några kategorier och av de kategorierna som låg som förslag lades TEAM till. dvs. att man kan välja vilket team och vilken avdelning TR:en ska komma ifrån.

4. TR nummer på boll

5. Start- och slutpunkt
I prototypen finns en startpunkt i animationen, de flesta användarna tyckte att det också skulle finnas en slutpunkt och att TR-bollarna då inte skulle behöva bli gröna men att slutpunkten istället skulle vara grön. Att ha en slutpunkt enligt användarna skulle göra att animationen blev mer tydlig och därför behölls denna funktion.

6. TR-status
TR:ar har olika status när de skapas beroende på vad skaparen tycker den ska ha för prioriter28. Detta kan ibland ändras under processens gång och därför ville användarna att bollarnas färg skulle gå att ändras. Men på grund av att värdena skulle behövas hämtas från olika databaser, så kunde man inte kunna använda den funktionen så som jag skulle vilja använda den.

28 Mallar kring vilka problem som ska ha vilken prioriter finns tillhands för alla anställda på Ericsson men är inte tillgängliga till allmänheten.
5. Resultat

Resultaten av ovanstående observationer och av loggboken kommer sammanställas här. Mycket av resultatet kan anses som tolkningar men faktum är att det noggrant analyserats med hjälp av olika handböcker för detta.29,30

5.1 Ostrukturerad observation

Flera observationer utfördes på anställda som använde TR-systemet dagligen. En observation redovisas under genomförandet, men nedan kommer resultaten. Fler frågor och svar kring observationen finns att hitta under bilaga B.

I observationen kan man tydligt se att även då TR:ar skickas specifikt till en avdelning så har de anställda ändå en chans att välja vilka TR:ar de ska lösna. Man kan också se att även om användaren själv får välja TR, så måste användaren ta en TR som passar ens egna färdigheter. Dessutom så bör användaren vara försiktig så att de inte tar något som de inte själv kan lösa, utan som kanske behöver lösas med hjälp av andra.

Slutligen kan man se att kontakten mellan olika användare är dålig, detta då man måste mejla personer med olika frågor och de kan vara så att de inte är kontaktbara när man väl behöver hjälp. Något annat som kan ses i genomförandet av observationerna, är att många meddelanden och mycket information skickas fram och tillbaka detta kan då påverka om man tar en TR eller inte. Om TR:en inte har till räckligt med information kan det försvåra lösandet och en anställd kan då avstå från att ta tag i just den TR:en.

5.2 Personlig forskningsloggbok

Resultatet för forskningsloggboken kan beskrivas som en hjälpande hand för observationerna. Utan loggboken skulle det inte vara möjligt att se eller komma ihåg detaljer från projektets process.

"Vecka 17 Måndag 23/4 till Fredag 26/4

Nu när analysen av prototyperna är gjorda så började processen med det riktiga skapandet. Då redan en lista vilken del av kodskapandet som skulle komma först gjorts, utgick jag från listan och började skapa HTML kodning. Detta fortsatte för resten av veckan för att när det var klart kunna gå över i nästa steg. Då applikationen ska vara på Internet Explorer (IE), måste jag anpassa koden till den webbläsaren. Då HTML 5 använts i skapandet var det inte alltid så lätt att få alla funktioner att fungera, HTML 5 syntaxen stöds nämligen inte helt i IE31. Men efter mycket om och men hitta jag några lösningar på internet och via de böcker som jag tidigare använt i mina kurser."

29 J. Bell.
Som kan ses här under vecka 17 så har jag här stöt på olika problem med HTML kondingen som jag inte var bered på. Om jag inte skrivit ner detta i loggboken skulle jag troligen inte kunnat komma ihåg hur jag löste problemet och vad som sedan hände med kodningen i efterhand.

Loggboken har också hjälp mig att hålla reda på detaljer och att hålla reda på vilka val som gjorts och varför. Dessutom har jag genom loggboken insett att projektet skulle kunnat utföras bättre i grupp då denna studie kunnat få mer insyn på varför man väljer och varför en viss diskussion uppkommit. Loggboken har fätt mig att inse att de val man gör är viktiga att komma ihåg då det kan påverka hur senare skede kring processen och utvecklingen tänkts ut. Hade jag inte varit noggrann med hur jag dokumenterar skulle information förlorats och visa delar skulle behövts gjorts om.

6. Slutsats och diskussion

Som visas i resultatet finns det många sätt att ”göra rätt” i sina val i projektprocessen. Mycket pekar på bra kommunikation och samspel mellan utvecklare, designer och användare, något som tidigare forskning kan bekräfta.

Loggboken har varit en hjälp under processens gång då jag inte alltid kommit ihåg vad jag tänkt i vissa delar av processen. Loggboken har jag kunnat gå tillbaka till för att se hur jag faktiskt tänkte och varför jag gjorde de val jag gjorde. Loggboken har inte varit det mest optimala metodsättet men har gett en förvånansvärt bra översikt över problem och lösningar som både haft positiv och negativ påverkan på projektet.

Som man kan se i resultatet av de observationer som utförts på anställda som dagligen använder TR-systemet, är det mycket frågor och information som skickas mellan många experter. Dessutom är det inte alltid lätt att förstå de olika förkortningarna, eller förklaringarna, som en annan anställd har använt sig av. Detta tar mycket tid, tid som man på annat sätt kunde använda till att få fram en snabb lösning på problemet. Observationerna har legat till grund i för vilka funktioner och för vilket utseende som applikationen skulle ha. Observationen och loggboken illustrerar hur de designval i systemutvecklingen påverkade utseende som applikationen till slut skulle få. Speciella observationerna har påverkat hur jag gjort mina val, detta då anställda anser att systemet är komplexet och jag vill inte med min vidareutveckling av systemet försvåra systemet ännu mer. Därför har noggranna val gjorts kring vilka funktioner som ska få vara med eller inte och hur dessa ska utformas. Som en ”sorts mental checklista” har jag frågat mig:

Går det att koda funktionen? Kommer funktionen att fungera i samspel med de andra funktionerna? Finns det någon begränsning med funktionen? Kommer funktionen hjälpa och förstärka förståelsen för vidareutvecklingen? Dessa frågor kan vara bra att ha i åtanken för systemutveckling eller vidareutveckling av redan befintliga system i framtiden.
6.1 Frågeställningens svar
Att svara på frågan: *Hur väljer och prioriterar man tekniska funktioner i utveckling av ett etablerat system?* har inte varit så enkelt då jag inte har haft åtkomst till alla fakta/observationer som jag velat ha. Jag bedömer, efter projektets genomförande, att det inte finns något generaliserbart svar på den frågan som ställts då valen kan variera beroende på projektets process.

Designvalen som görs bör dock alltid vara noggrant dokumenterat och motiverad för att man kan vara säker på sina beslut. Valen som görs kan också ändras om användarna ger en indikation på att en funktion inte gör (eller upplevs göra) det den är tänkt att göra utifrån designers perspektiv.

6.2 Förslag till fortsatta studier
För fortsatta studier är det möjligt att utöka omfången av system, undersöka utvecklingen av flera system på flera olika företag för att kunna få en mer exakt bild av hur processen kring val och prioriteringar går till. Man behöver heller inte begränsa sig till just tekniska funktioner, utan kanske också kan undersöka andra områden av utvecklingsprocesser och faser.

Utöver detta skulle fördjupning av hur utvecklare och designer tänker kunna utföras genom en mer exakt och noggrann loggboksförning. Dessutom skulle andra forskare med hjälp av det kunna gå in enbart på systemutvecklarens syn på processen och inte bara utgå ifrån det egna intrycket av forskaren som observerar.
7. Referenser

Benyon D. Designing Interactive Systems – A comprehensive guide to HCI and interaction design Italy: Addison Wesley, Pearson, 2010.

Ericsson företagsinformation
http://www.ericsson.com/thecompany/company_facts/facts_figures
Hämtat: 2013-03-14

Adobe Edge Animate
http://html.adobe.com/edge/animate/
Hämtat: 2013-04-25

WC3 W3School HTML5 Tutorials
http://www.w3schools.com/html/html5_intro.asp
Hämtat: 2013-05-06
8. Bilagor

Bilaga A - Personlig forskningsloggbok

Vecka.13 Måndag 25/3 till Fredag 29/3

Vecka.14 Måndag 1/4 till Fredag 5/4

Analyser färdigställda och start av skapandet av digitala(Hi-fi) prototyper. Flera designkomponenter som skapades under praktiken implementeras i prototypen som skapades i Adobes Edge Animate\(^\text{32}\). Edge Animate används då filerna sparas bland annat som HTML, vilket gör att man kan testa animationen till applikationen i en webbläsare på en gång. Två olika digitala prototyper skapas för att ge olika varianter till användarna att välja mellan. Prototyperna färdigställdes under veckan slut.

Vecka.15 Måndag 8/4 till12/4 Fredag

Under denna vecka har prototypen visats för handeldaren på Ericsson. Handeldaren har haft lite tips på prototypen som under veckans gång har fixats. Detaljer har rättats till och animationen har förbättrats och fått lite mer funktioner. I slutet av veckan har PM redovisning haft för projektet så att resterande elever kunde se vad man alla håller på med på Examensarbetet.

Vecka.16 Måndag 15/4 till Fredag 19/4

Efter att sista detaljerna av prototypen har skapats ska de nu presenteras på ett feedbackmöte där personal som använder TR-systemet dagligen ska få kunna ge feedback på vad som gjorts och ge förslag på vad som kan ändras och förbättras. Efter mötet analyserades svaren och prioritering av vad som ska göras hänäst skrevs ned. Dessutom prioriterades vilka funktioner som man skulle ha med för att det skulle passa användarna på bästa sätt.

Vecka.17 Måndag 23/4 till Fredag 26/4

Nu när analysen av prototyperna är gjorda så började processen med det riktiga skapandet. Då redan en lista vilken del av kodskapandet som skulle komma först gjorts, utgick man från listan och började skapa HTML kodning. Detta fortsatte för resten av veckan för att när det var klart kunna gå över i nästa steg. Då applikationen ska vara på Internet Explorer, måste jag anpassa koden till den plattformen. Då HTML 5 används i skapandet var det inte alltid så lätt att få alla funktioner att fungera, HTML 5 syntaxen stöds nämligen inte helt i Internet Explorer33. Men efter mycket om och men hittade jag några lösningar på internet och via de böcker som jag tidigare använt i mina kurser.

Vecka.18 Måndag 29/4 till Fredag 3/5

Då denna vecka har några helgdagar har de få dagar man kunnat vara på kontoret varit viktigast. Här började skapandet av PHP och databasuppkopling. För att kunna skriva PHP kod behövs olika uppkopplingar till servrar och det tog lång tid innan man fick det att fungera. I slutet av vecka hade jag fått igång allt och första kodraderna i PHP kunde skapas.

V.19 Måndag 6/5 till fredag 9/5

V.20 Måndag 13/5 till Fredag 17/5

Denna vecka fortsatte skapandet av Animationen. Detta har gjorts med hjälp av HTML JavaScript och CSS. Det har inte varit så enkelt som tänkt och jag har då tagit hjälp från kollegor och klasskamrater när jag fastnat i ett visst läge. Detta har tyvärr gjort så att animationen inte kommer att vara färdig när jag hade tänkt få den färdig. Därför har jag behövt lägga animationskapandet lite åt sidan för att börja skriva mer intensivt på rapporten.

V.21 och 22 Måndag 20/5 till Fredag 31/5

Dessa två veckor gick åt att skriva rapport och lämna in det sista inför redovisningsveckan v.23. Sista tiden av vecka 22 har dock gått åt att skapa lite mer kodning för att försöka hinna med det sista innan projektet är slut. Dem sista problemen har löst och redovisning har planerats och rapport inspekterats av så väl handledare på Ericsson och handledare på Södertörns högskola.

33 W3C, W3School: http://www.w3schools.com/html/html5_intro.asp
Bilaga B - Observations frågor och svar

Observation av anställt A

Jag: Då borde TR:en redan vara klar?

A: Nej inte riktigt, för om du tittar här(pekar på skärmen) så står det att de i senare skede vill ha en fix till mjukvaran också. Men vem som ska ta hand om det är lite svårt att få fram genom informationen vi fått här.

Jag: Så vad gör man då om inte information för det finns? Hur får man fram den informationen?

A: Jo...om du ser här(pekar på skärmen igen) så finns information om vem som först skapade denna tråd(TR). Man får mejla den personer, samt så verkar det som att det kanske ska vara någon annan mjukvare avdelning som ska ta hand om den, så jag kommer mejla dem för att skapa en diskussion och få mer insikt från annat håll. Nån på den andra avdelningen kanske förstår informationen som finns här bättre än jag.

Jag: Så hur lång tid kan detta ta då? Om du måste mejla massa människor, tar det inte längre tid?

A: Det beror på, nån dag eller två kan det ta innan jag får svar på mejl, oftast kommer man behöva skicka mer meddelanden mellan varandra och eller andra.

En lösning på problemet togs fram och skickades på testning. Sedan skickades lösningen ut till kund.

Observation av anställd B

Jag: Hur väljer du vilken TR som du ska arbeta med?

B: Vi får in några i vår backlogg, där kan man titta på dem och om man hittar någon som man tror man kan lösa tar man tag i den och klickar på pull. Avdelningarna har en egen backlogg och för oss finns denna(klickar på länk och pekar på skärmen).

Jag: Får man välja vilken TR man vill?

B: Inte alltid men självklart är det en fördel om det är ett område som man vet att man är duktig inom eller har tekniska färdigheter inom.

Då TR:en som arbetates med här inte egentligen skulle vara på den avdelningen som B arbetade på skickades den vidare till en ny avdelning, där av har inte så mycket frågor besvarats.