Märstaån
– ett vattenlandskap
Är våtmarker och dammar vägen framåt?

Av: Matz Norling
Handledare: Mona Petersson
Abstract
The overall aim is to examine how the European Union Water Framework Directive has affected the local water management in the catchment Märstaån situated in the eastern part of the lake Mälaren river basin, Sweden. The first part of the study gives an historical overview of the area with focus on how the old agricultural landscape was handling the nutrient load from farming activities by means of different kinds of wetlands. By using the concept of the procedural landscape, introduced by Torsten Hägerstrand, together with historical maps with dates starting from the 17th century, the pre-modern landscape is analyzed. The second part is an investigation, based on qualitative data, on how the different actors in the catchment area work together to secure the water quality for the Märstaån river. The analysis shows that the Märstaån catchment river systems are mostly unchanged in the rural areas. The exception is the mainstream section of the Märstaån river running partly underground today and the Halmsjöbäcken river that is heavily affected by the Arlanda airport situated within the catchment area. A number of new wetlands have also been constructed to compensate for old wetlands affected by the growth of the Märsta and Arlanda urban areas. The newly formed water cooperation group with representatives from all the major actors in the catchment area is very much alive with stated mission and goals. The main activity today is extended water quality monitoring in order to fulfill the local interpretation of the European Union Water Framework Directive.

Sammanfattning
Innehåll

Abstract ... 2

Sammanfattning .. 2

Innehåll .. 3

1 Inledning .. 5
 1.1 Bakgrund ... 5
 1.2 Syfte och frågeställningar ... 5
 1.3 Avgränsning ... 6
 1.4 Metod .. 7
 1.5 Källor och källkritik .. 7

2 Kunskapsbakgrund och teori .. 8
 2.1 Geografiskt perspektiv .. 8
 2.2 Naturgeografisk hypotes om våtmarker i odlingslandskapet 10
 2.3 Kulturgeografisk hypotes om EU-direktivets påverkan på lokal vattenhantering 11

3 Förloppslandskapet ... 12
 3.1 Historisk bakgrund .. 12
 3.2 Steningedalen ... 14
 3.3 Bristadalen år 1952 .. 17
 3.4 Moralundsdalen .. 18
 3.5 Måbydalen ... 19
 3.6 Halmsjöödalen .. 23

4 Dagens landskap 2011 .. 24
 4.1 Märstaån idag .. 24
 4.2 Arlandas vattenlandskap ... 27
 4.3 Måbydalens vattenlandskap ... 31
 4.4 Steningedalens vattenlandskap .. 33
 4.5 Jordbrukslandskapet runt Halmsjö- och Kättstabäcken ... 34
 4.6 Planeringslandskapet .. 35

5 Horisontala länkningar .. 37
 5.1 EU Vattendirektiv .. 37
 5.2 Vattenmyndigheten .. 37
 5.3 Länsstyrelsen i Stockholms län .. 37
 5.4 NOS-Dagvatten .. 39
 5.6 Oxunda vattensamverkan ... 39
6 Vertikala länkningar

6.1 Märstaåns samverkansgrupp

6.2 Sigtuna kommun

6.3 Swedavia - Stockholm-Arlanda Airport

6.4 Fortrum Heating Scandinavia

6.5 Lantbruk i avrinningsområdet (LRF)

6.6 SÄAB/RagnSells

7 Analys

7.1 Våtmarkernas förändring i Märstaåns avrinningsområde

7.2 Planer för god ekologisk status till 2015 (2021)

7.3 Fortsatt verksamhet i Märstaåns samverkansgrupp

8 Diskussion

8.1 Visionslandskapet

9 Slutsatser

9.1 Fortsatt forskning

Referenser

Intervjuer

Internetlagrade

Tryckta källor

Underlagskartor

Alla foton och illustrationer av författaren där inget annat anges.
Kartor från lantmäteriet: ©Lantmäteriet Gävle 2011 Medgivande l2011/0097
VISS data och kartor: ©SMHI2011
Primärkartan: ©Sigtuna kommun 2011

Samtliga kartor presenteras med norr uppåt.
1 Inledning

1.1 Bakgrund

1.2 Syfte och frågeställningar
Syftet med denna uppsats är att beskriva och analysera Märstaåns avrinningsområde i Sigtuna kommun med avseende på hur det sett ut tidigare, hur det ser ut nu och vilka planer som finns framöver. Genom att analysera historiskt kartmaterial, Sigtuna kommuns primärkarta samt studera verksamheten i Märstaåns samverkansgrupp tillsammans med egna fältstudier avses denna frågeställning att belysas genom att följande frågor kan besvaras.

1 Hur har Sigtuna kommuns våtmarker längs Märstaån och Halmsjöbäcken förändrats sen storskiftet på 1700-talet?

2 Hur kan nyanslagda och planerade våtmarker bidra till att uppnå god ekologisk status år 2015 (2021) enligt de intervjuade aktörernas uppfattning.
3 Hur kommer det planerade vattenrådet (nuvarande samverkansgruppen) att arbeta för att säkerställa Märstaåns vattenkvalitet.

1.3 Avgränsning

Märstaåns avrinningsområde är ung 80 km² stort. Från NO ansluter Halmsjöbäcken som börjar i Halmsjön och rinner genom några våtmarker innan den övergår i en kulvert under Arlanda flygplatsområde och vidare genom Halmsjödalen till Måbydalen där den förenas med Kättstabäcken i referenspunkt ”F”. Området väster om Arlanda avvattnas via en dammanläggning innan utflödet i Kättstabäcken. Från NV ansluter Odensalabäcken som avvattnar jordbruken i Odensala. Från SO kommer Rosersbergsbäcken som ansluter via de nya våtmarkerna i Steningedalen. Själva Märstaån börjar vid referenspunkt ”F” och går sedan in i en bergkulvert vid Måbydalen där Moralundstunneln börjar och rinner sen ut i den gamla fåran vid Steningedalens årike. Moralundsbäcken och Lill-Bristabäcken är mindre flöden, periodvis torrlagda.

1.4 Metod
Den arbetsgång som Elspeth Graham föreslår (Flowerdew, Robin 2005) har tolkats enligt följande flödesdiagram och anpassats till den process som Södertörns Högskola tillämpar för C-uppsatser. Se flödesbeskrivning i Figur 2.

![Flödesdiagram](image)

Figur 2 Arbetsgång för uppsatsarbetet

Både kvalitativa och kvantitativa metoder har använts för denna studie. De kvalitativa metoderna framför allt vid besök hos de olika aktörerna i avrinningsområdet. De kvantitativa metoderna för analys av kartor, rapporter och beskrivningar.

1.5 Källor och källkritik
Huvudkälla för arbetet är de kvalitativa intervjuerna med personer från de olika aktörerna involverade i avrinningsområdet. Dels erhålet skriftligt material och artiklar. Här måste beaktas att de olika aktörerna har olika roller som t ex ansvarig myndighet eller privat företag. När det gäller frågan hur man skall arbeta för att uppnå god status i vattenförekomsten innebär detta att man kan ha olika prioriteringar på vad som är viktigt och behöver åtgärdas.

Uppsatser om området är spårade genom de sökfunktioner som Södertörns bibliotek tillhandahåller samt via de vanliga sökmotorerna på nätet. Kartor kommer främst från Lantmäteriet, Metria och SMHI. Här bedöms källkvaliteten som mycket god.
2 Kunskapsbakgrund och teori
Här beskrivs hur jag tänker använda mitt empiriska material, kvalitativt och kvantitativt, gentemot de teorier som framförts i tidigare forskning inom området och vilka nu är grunden till mina hypoteser.

2.1 Geografiskt perspektiv
Jag använder ett angreppsätt som ger både ett naturgeografiskt och kulturgeografiskt perspektiv. Detta möjliggörs genom användandet av ett övergripande regionalgeografiskt synsätt överlagrat på förloppslandskapets tidsgeografiska perspektiv tillsammans med en grundläggande faktainsamling och studie av Märsaåns avrinningsområde och de verksamheter som pågår.

Genom att använda ett övergripande regionalgeografiskt synsätt med horisontella och vertikala länkningar (Gren & Hallin 2003 s.94) har faktainsamlingen strukturerats vilket underlättat identifieringen av de olika aktörerna. De horisontella länkningarna belyser vatten och aktörer utanför Märsaåns delavrinningsområde. De vertikala länkningarna belyser flöden, aktörer och företeelser som är relaterade till Märsaåns delavrinningsområde, se Figur 3.

Vertikala Länkningar:
- Sigtuna kommun
- Swedavia
- Fortum Heat Scandinavia
- Såab
- Lantbrukare

Horisontella Länkningar
- EU
- Riksdag
- Länsstyrelse
- Naturvårdsverket
- SMHI
- LRF
- NOS Vattensamverkan
- Oxunda Vattensamverkan
- Norra Östersjöns Vattendistrikt
- Norrströms avrinningsområde
- Inre Mälaren
- Märsaån
- Halmstadsbäcken
- Kållstaboravenche
- Odensalabäcken
- Rosersbergsbäcken
- Moralundsäcken
- Lill-Bristabäcken

Figur 3 Horisontella och vertikala länkningar för Märsaåns avrinningsområde. Gröna rutor innehåller aktörer, blå rutor naturområden.

För det tidsgeografiska perspektivet har jag valt att förlita mig till Hägerstrands förloppslandskap (Hägerstrand 1992), se Figur 4, som väl belyser och pedagogiskt beskriver hur man genomför en landskapsanalys med tidsdimensioner. Hägerstrand menar att en dynamisk syn på händelseförloppet är nödvändigt om det är aktuellt att återställa tidigare ingrepp i landskapet som kanske gjorts från snäva tekniska perspektiv. Eftersom allt är föränderligt och vi behöver klarlägga vilka förlopp som lett till områdets förändring över tid behöver vi se detta i olika tidsperspektiv. (Hägerstrand 1992 s11).
Förloppslandskapet kommer att vara en av grunderna i mitt analysarbete kopplat mot den naturgeografiska delen när jag studerar landskapets förändring sen 1700-talet med fokus på Märstaån och dess biflöden.

Hägerstrands förloppslandskap

Märstaåns förloppslandskap

![Diagram](https://via.placeholder.com/150)

Figur 4 Förloppslandskapets teoretiska grund till vänster, min uppdelning för Märstaån i dåtid, nutid och planerad framtid till höger

Med sitt målande språk framhåller Hägerstrand också att ”Bebyggelsen har under växlande demografiska, ekonomiska och tekniska omständigheter placerats ut över en fysiografisk mosaik av växlande karaktär” (Hägerstrand 1992 s8). Detta skall vi nu hantera. Sedan för han fram förloppslandskapet som möjlig integrationsram och att ”allt som är närvarande inom den lagda geografiska gränsen inklusive allt som rör sig in och ut över gränsen under den tidsperiod man väljer” måste beaktas (Hägerstrand 1992 s11) vilket väl täcker in den förväntade rörligheten hos aktörerna.

Genom en analys utförd med utgångspunkt från en hypotetisk-deduktiv ansats (Gren & Hallin 2003) på insamlade primärdatal, vill jag förstå om mina grundläggande teorier och hypoteser är tillämpliga för Märstaåns avrinningsområde. Som filosofiskt och teoretiskt ramverk för denna analys, som använder både ett natur- och kulturgeografiskt synsätt, har jag tillämpat det geografiska synsätt och den metod som beskrivs i kapitlet ”Philosophies underlying human geography research” av Elspeth Graham, se Figur 5. Här framhåller man att all kunskap måste vara tillförlitlig och kvalitetsäkrad, frågeställningarna förståbara och kunna besvaras och att svaren skall utöka vår geografiska...
kunskapsbakgrund. Här går man också igenom de grundläggande filosofiska grunderna för naturalism kontra anti-naturalism och realism kontra anti-realism inom naturvetenskap och samhällsvetenskap (Flowerdew Robin 2005 s8-15)

![Diagram](image)

Figur 5 Elspeth Grahams filosofiska ramverk

2.2 Naturgeografisk hypotes om våtmarker i odlingslandskapet

När den agrara revolutionen inträffade i Sverige på mitten av 1800-talet gjordes omfattande ingrepp i befintliga våtmarker och sjönära områden för att öka arealen odlingsbar mark. Torrläggning och åuträtning har haft en negativ inverkan med övergödning av sjöar och vattendrag som resultat. Man vill nu återställa delar av dessa ingrepp som en del av åtgärderna för att få den bättre vattenkvalitet som EU nu efterlyser i sitt vattendirektiv (Bydén 2004 s 66).

Redan 1975 skriver Valfrid Paulsson i förordet till boken ”Myrmarker” om våtmarkernas mycket stora betydelse samtidigt som han är oord för allt fler våtmarker förstörs. Det är inte bara naturliga våtmarker som är betydelsefulla utan även anlagda dammar fyller en viktig funktion för att berätta om vår kultur och ge liv åt landskapet och livsrums åt djur och växter (Engström et al. 1975 s7,8).

I sitt examensarbete på SLU ”Dagvatten i Märsta : förslag till anläggning för ekologisk hantering samt metodöversikt” skriver Sofia Wulf om dammars, våtmarkers och genomsläppliga ytors stora betydelse för ekologisk dagvattenhantering . Förslaget visar hur en dagvattenanläggning i stadsnära
miljö kan utformas för att förbättra tillgängligheten till Steningedalen och vattenkvaliteten i Mårstaån vid utloppet i Steningeviken (Wulf 2008).

I ”Vatten och mångfald” skriver Peter Feuerbach och Johan Strand i förordet att vi nu bygger dyra reningsanläggningar för samma sorts vatten som man förr utnyttjade för produktiv biologisk produktion. Senare i boken sägs också att vattninger är lämpliga för att rena stora vattenvolymer med låga halter av föroreningar från jordbrukets läckage då det viktigaste för en sedimentationsprocess är att vattnets hastighet minskar betydligt. (Feuerbach 2010 s30).

Ovanstående studier ligger till grund för min hypotes inom det naturgeografiska området.

Naturgeografisk hypotes: En återställning av Mårstaåns flöde och våtmarker till tillståndet före den agrara revolutionen är den bästa vägen framåt för att uppnå god vattenkvalitet till år 2015(2021).

Den naturgeografiska hypotesen om vattenavrinning och landskapsförändringar har framför allt fått en naturvetenskaplig utgångspunkt kopplad till naturalism och kvantitativa metoder, se Figur 5. Hypotesen prövas via en analys av historiska kartor över avrinningsområdet och en undersökning av möjligheterna att återskapa eller ersätta de våtmarker som tidigare fanns.

2.3 Kulturgeografisk hypotes om EU-direktivets påverkan på lokal vattenhantering

I boken ”Europa Quo Vadis” beskriver EU ha en komplexitet som överträffar de flesta andra organisationer, såväl nationella som internationella och påverkar oss på lokal, regional, statlig och överstatlig nivå. EU-organen är många och svåröverskådliga med många olika slags aktörer. Inte sällan råder det dessutom oklarheter om den inbördes ansvarsfordelningen (Jönsson et al. 2007 s156).

I sin studie om hur EU:s vattendirektiv implementerats i Sverige skriver Hammer om de problem som uppstår i övervakningen pga. av brist på kvalitativa data. Förståelsen av hur vattnet flyter i området är nyckeln till kopplingen mellan ekosystemet och landskapet. Utmaningar är statusbestämning för vattenförekomster, förbättrad koordinerad övervakning och hur man hanterar diffusa utsläpp. (Hammer et al. 2011 s218).

Ovanstående studier har fått mig att formulera nedanstående hypotes rörande frågan om hur EU:s vattendirektiv har trängt ner och uppfattas på den lokala nivån i Mårsta avrinningsområde.

Kulturgeografisk hypotes: Mårstaåns samverkansgrupp är införstådda med de regler som gäller för hanteringen av Mårstaåns avrinningsområde samt har en samsyn på vad som menas med god status för Mårstaåns vatten och hur denna status skall övervakas.
Den kulturgeografiska hypotesen om Märstaåns samverkansgrupp är fokuserad på aktörernas verksamhet inom avrinningsområdet och bygger på en samhällsvetenskaplig utgångspunkt (Flowerdew Robin 2005 s15) socialteoretiskt fokuserad på ”Human agency” och kopplad till kvalitativa metoder (Flowerdew Robin 2005 s25). Hypotesen prövas via en analys av kravstrukturen gällande avrinningsområdet och via intervjuer av deltagarna i Märstaåns samverkansgrupp.

3 Förloppslandskapet
I följande avsnitt presenteras hur avrinningsområdet förändrats över tid. Genom att visa kartor från olika tidsperioder över samma område, enligt Hägerstrands teorier om förloppslandskapet, kan man följa hur vattendrag och våtmarker förändrats. Överlagrat på kartorna finns dagens hydrologiska lager från kommunens VA och primärkarta vilket ger en bra referens till dagens landskap. Här redovisas bara kartor som är intressanta ur analyssynpunkt varför urvalet skiljer sig mellan de olika dalområdena. I det fall äldre kartor saknas för någon del presenteras istället ett s/v ortofoto.

3.1 Historisk bakgrund
Under senare delen av äldre järnåldern, vars gravfält är markerade med ljusgrön färg i Figur 6, inleddes en kraftig befolkningsexpansion i studieområdet. Framför allt var det slättområdena i Odensala som togs i bruk. Lämningar efter jordbruket, främst stensträngar är koncentrerade till västra halvan av Odensala och tyder på ett jordbruk av permanent karaktär. Under yngre järnåldern odlades de tidigare obebyggda slätterna och sprickdalarna tills hela avrinningsområdet var befolkat. Det var då den nuvarande gårdstrukturen också bildades där många gårdar eller gårdsnamn finns kvar även idag som Kättsta, Broby, Måby, Husby, Märsta, Brista, Steninge mm inom avrinningsområdet (Bratt 1988).
Figur 6 Avrinningsområdet år 1000. Avrinningsområdet från VISS markerat med rött, gravfält från Riksantikvarieämbetet i ljusgrönt. Genererad från SGU med vägar, järnvägar, landningsbanor i svart och nuvarande vattendrag och strandlinjer i blått. ©SMHI2011, ©SGU 2011

3.2 Steningedalen

3.2.1 Steningedalen på 1700-talet
I skifteskartornas, Figur 7, beskrivning kan man läsa att Steninges områden nära Märstaån är betecknade som ”starrång som gifver ymningt groft hårdwall samt Stargräs vid sjön, består av meddelmättig, bärande hårdwall, något starr vid bäcken”. Hårdwall betecknar en torr äng (Cserhalmi 1997). Att det växer starr tyder på att det är en ogödslad våtmark närmast sjön (Steningeviken) en så kallad madäng.

Valstas motsvarande områden beskrivs som ”består dels av sidländ dels något högländare Starr wall mycket tuvig och mossbelupen, giver starr och bladhö, våta med videbuskar bevuxna beteshagar” Märstaåns sträckning motsvarar dagens sträckning men är dock mer meandrande uppströms.
Steningeviken sträcker sig längre in i dalen jämfört med dagens läge.

3.2.2 Steningedalen på 1900-talet

3.2.3 Steningedalen 1952

3.3 Bristadalen år 1952
Rosersbergstången har här kvar sin ursprungliga fåra ner förbi Skvalet och ut till Märstaån, se Figur 10. Överlägget med de nya vattendammarna visar att Rosersbergstångens övre del är identisk fram till första dammen. Smådammar i övre delen vid nuvarande Märsta Centrum sammanfaller med Märstaåns okulvererade läge. De ”meandrande” fastighetsgränserna ovan dammarna som speglar åns tidigare fåra syns tydligt.

3.4 Moralundsdalen

3.4.1 Märsta gård år 1636
På den geometriska kartan, Figur 11, ser vi hur områdena närmast Märstaån är prickade i blått vilket indikerar en naturlig våtare äng (Cserhalmi 1997). Bron vid vägen mot Stockholm finns här norr om nuvarande dammar vid Märsta Centrum.

![Figur 11 Märsta gård (vid Forum) år 1636 med dagens vattendrag i blått och dammarna vid Märsta centrum i ljusblått. ©Lantmäteriet Gävle 2011 Medgivande I2011/0097, ©Sigtuna kommun 2011.](image-url)
3.4.2 Moralundsdalen 1952

På nedanstående karta, Figur 12, ser vi området före kulverteringen av Märsaån i Moralundstunneln. Problem fanns här med återkommande översvämningar som har ritats in på den höjdkurva från kommunens primärkarta som går igenom järnvägsviadukten (Sigtuna kommun/Vatten 2011).

3.5 Måbydalen

På den geometriska kartan från 1690, Figur 14, ser vi att kvarnen, läge A, redan finns men med namnet Tompta kvarn. Ytterligare en kvarn fanns vid läge B. Halmsjöbäcken är numera kulverterad i området.

På storskifteskartorna från 1760-talet, Figur 15, syns Märstaåns och Odensalabäckens mer meandrande flöden vid Sätuna. Kättstabäckens meandering i övre delen återfinns än i dag som fastighetsgränser på primärkarten. Den undre delen av Kättstabäcken, se röd markering, går inte via
punkt F utan ansluter på 1760-talet till Märstaån nedströms punkt F. På den äldre geometriskakartan från 1636 går troligen Kättstabäckens nedre flöden längs med stängslet till kalvhagarna.

På den häradsekonominiska kartan från 1906, Figur 16, ser vi hur Kättstabäckens nedre del nu ansluter till punkt F. På den ekonomiska kartan från 1950, Figur 17, ser vi att Odensalabäcken och Märstaåns flöden nu är uträtade medan Halmsjöbäcken och Kättstabäckens övre del har kvar sin ursprungliga fåra.

3.6 Halmsjödalen

Här har vi kommit fram till Halmsjöbäckens källa vid nuvarande Arlanda flygplats. Ingen större förändring mellan år 1900, se Figur 18 och år 1950, se Figur 19 när det gäller åkermark. Dagens våtmarker finns även på den häradsekonominiska kartan markerad streckat blå färg, se Figur 18.

4 Dagens landskap 2011

Här följer en presentation av Mårstaåns flöde och vattenkvalitet samt en översikt av de åtgärder som gjorts fram till och med 2011 när det gäller dammar och våtmarker i olika områden för att förbättra vattenkvaliteten. Översikten är baserad på kommunens ortofoto i färg samt lantmäteriets ortofoto i s/v. Överlagrat finns hydro- och marklager från primärkartan samt egna korrigeringar gentemot verkligheten.

Mårstaåns avrinningsområde omfattar idag totalt ca 80,5 km² fördelat på 35 % skogsmark, 28 % åkermark och resterande 37 % av motorväg, flygplats-, industri- och handelsområde samt hårdgjorda ytor i M ärsta och Rosersbergs tätorter (NOS vattensamverkan 2011).

4.1 Mårstaån idag

Mårstaån sträcker sig från Arlanda i norr till Steninge i söder skrivs det på kommunens hemsida men också att namnet i första hand syftar på sträckan nedströms punkten där Kättstabäcken förenar sig med Halmsjöbäcken, idag betecknat som referenspunkt “F” i många sammanhang. Det uppmätta medelflödet under åren 2007-2010 var 10 000 m³/dygn (115 l/s) och maxflödet 22 600 m³/dygn (260 l/s). (NOS vattensamverkan 2011).

Figur 20 Märstaåns flöde och utsträckning enligt VISS till vänster, enligt Google till höger. ©SMHI 2011,

Märstaån har av Vattenmyndigheten bedömts ha ”God kemisk status” men enbart ”Måttlig ekologisk status”. Vattenmyndighetens beslut innebär att ån senast år 2021 även ska uppnå ”God ekologisk status”. Anledningen till tidsförskjutningen är framför allt att åtgärder inte är tekniskt-ekonomiskt rimliga att hinna genomföra så att de får effekt till år 2015.

Figur 21 Märstaâns flödesvägda årsmedelvärden av fosfor (PTOT) och kväve (NTOT). Röd linje visar årsflödet uttryckt som ytspecific avrinning, dvs. flödet per km2 avrinningsyta (Pansar 2010)

När det gäller arbetet mot EU:s vattendirektiv är VISS (VattenInformation System Sverige) den officiella databasen där områden och flöden definieras tillsammans med uppgifter om vattnets kvalitet och riskbedömningar framåt i tid, se Figur 22. SMHI har det praktiska ansvaret för databasen som finns tillgänglig på www.viss.lst.se/

4.2 Arlandas vattenlandskap

Arlandas vattenlandskap är uppströms om referenspunkt ”F”, se Figur 1, och sträcker sig upp mot Halmsjön längs Halmsjöbäcken samt längs avvinningen mot Kättstabäcken. Bana 1 och västra delen av bana 2 har avvinning mot väster och till KDA, Kättsta dagvattenanläggning. Bana 3 och östra delen av bana 2 har avvinning mot Halmsjön och Halmsjöbäcken. När det gäller dagvattenhantering finns ett avtal mellan Swedavia och Sigtuna kommun som säger att Swedavia bygger och underhåller systemen öster om E4 (Intervju 8).

Swedavia ansvarar idag för vattenkvaliten för allt dagvatten som lämnar flygplasten till Mårstaån. Flygplatsen hanterar stora mängder av formiat för halkbekämpning samt i viss mån glykol vilket gör att halten av organiskt material (TOC) blir hög i Mårstaån trots de dammar som redan finns runt Arlanda uppströms. Detta riskerar att ge upphov främst till syrefrist och övergödning vilket nu gör att man fokuserar sitt arbete på att undvika toppar i utsläpp och att få bra syreförhållanden. Arlanda flygplatsområde tar dessutom emot svårnedbrytbara humusämnen från omkringliggande skogsmarker i samt organiskt material från jordbruk och vägar. Därför bedömer Swedavia det inte realistiskt att komma ner på halter under 12 mg/l vid punkt F eftersom det är vad omkringliggande markytor tillför minst i årsmedelvärde.

Fosfor och kvävehaltarna, se Figur 23, är oftast höga eller mycket höga men har en mer oregelbunden variation än det organiska materialet vilket tyder på att det också påverkas av annat än flygverksamheten. Utsläppet av kväve har minskat drastiskt sedan Urea övergavs för halkbekämpning i början av 90-talet och vägar. Därför bedömer Swedavia det inte realistiskt att komma ner på halter under 12 mg/l vid punkt F eftersom det är vad omkringliggande markytor tillför minst i årsmedelvärde.

Vid mät punkt F sker sedan 2010 också en flödesrelaterad realtidsmätning av vattnets kvalitet och Swedavias miljöingenjörer övervakar mätvärdena flera gånger varje dag bl. a via mobil. Dessutom gör man ett besök per dag för manuell avläsning av mätvärden. Se Figur 24. Realtidsmätningarna är fortfarande i en utvärderingsfas och framförallt måste kväve- och fosforvärdena kvalitetssäkras då de verkar ge alltför höga värden idag (Intervju 8).
Figur 24 Mätpunkt F 2011-12-19 15:10. Infällda är foton på den mobila terminalen samt interiören i mätboden och detalj på displayen för realtidsdata. Passagen för vattnet under boden är utformad för att ge vattenflödet som en funktion av vattenståndet i Märstaån vid bodens placering. Vid ett besök den 19/12 2011 kl 15:10 är flödet 791,6 l/s, syrehalten 11,1 mg/l, temperaturen 2,6 °C, TOC (Total Organic Carbon) 25,8 mg/l, Total Fosfor 0,116 mg/l och Total kväve 2,351 mg/l.

För bana 3 och den östliga delen av bana2 och finns en utjämningsdamm med syresättning vid bana 3 samt ett våtmarksområde SV om Halmsjön med översilningsytor. Vattnet leds slutligen in i den stora fördrójningsdammen, Tulldammen, där syresättning sker innan inloppet till Halmsjöbäckens bergtunnel under flygplatsområdet. Man skall också bygga en anläggning motsvarande Kättsta dagvattenanläggning i våtmarksområdet. I Figur 26 är VISS avrinningsområde markerat med rött och den verkliga avrinningsområdet efter anläggningen av bana 3 är markerat med röd streckad linje (Swedavia MKB 2011).
Figur 25 KDA, Kättstabäckens dagvattenanläggning (Swedavia)
4.3 Måbydalens vattenlandskap

4.4 Steningedalens vattenlandskap

![Figur 28 Steningedalens Vattenlandskap](image)

4.5 Jordbrukslandskapet runt Halmsjö- och Kättstabäcken
4.6 Planeringslandskapet
Den största förändringen framöver är den nya dagvattenanläggningen, Halmsjöbäckens dagvattenanläggning, vid Halmsjöbäcken som Miljödomstolen nu godkänt, se Figur 30 (Intervju 8).
Dammen är avsedd för dagvatten från bana 3 och planeras bestå av de två befintliga dammarna, de tre nya kombinerade utjämningsmagasinen och sedimenteringsdammarna samt två befintliga våtmarksområden, se Figur 26. I anläggningen planeras luftning för att syre ska finnas tillgängligt för nedbrytning av organiska ämnen. I anläggningen planeras även en kontrollstation för utgående vatten (Swedavia MKB s65).

Planerad Halmsjöbäckens dagvattenanläggning, HDA

Figur 30 Planerad dagvattenanläggning vid Halmsjöbäcken (Swedavia MKB s65).

![Figur 31 Detaljplansområde för Brista kraftvärmeverk markerat med vit streckad linje. Planerade nya vägar markerade med streckad linje i rött. Park- och dammområden markerade med grönt. Rosersbergsbäcken i blått (Sigtuna kommun, detaljplan Brista 2010)](image-url)
5 Horisontala länkningar
Här följer en översikt av de olika regler som finns rörande avrinningsområden samt hur olika myndigheter ser på sitt ansvarsområde. Avsnittet är en översikt baserad på litteratur samt för arbetet genomförda intervjuer och seminarier.

5.1 EU Vattendirektiv

5.2 Vattenmyndigheten
I Sverige har man bildat Vattenmyndigheten som skall ha en samordnande roll och se till att alla arbetar mot samma mål. Vattenmyndigheten är uppdelad efter olika vattendistrikt och Märstaåns avrinningsområde tillhör Norra Östersjöns vattendistrikt som är placerad vid Länsstyrelsen i Västmanland. Varje vattenmyndighet har ett kansli och en styrande vattendelegation utsedd av regeringen. För Norra Östersjön styrs arbetet via:

1 Förvaltningsplanen för Norra Östersjöns vattendistrikt
2 Åtgärdsprogrammet för Norra Östersjöns vattendistrikt
3 Miljökvalitetsnormerna för vattenförekomster i Norra Östersjöns vattendistrikt

5.3 Länsstyrelsen i Stockholms län

5.3.1 Vattenverkstad Länsstyrelsen Stockholm 2011-11-11
Möte med ekologer, planerare och politiker från kommunerna, människor från bransch- och intresseorganisationer, lantbrukare och tjänstemän från länsstyrelserna. Syftet med seminariet var att stimulera åtgärdsarbetet i alla kommuner och branscher, generera nya samarbeten och öka kunskapen om miljöproblemen samt orsakerna till dem i varje avrinningsområde.

Efter uppdelning och arbete i olika grupper presenterades slutligen följande fokuspunkter för dagvatten:

Kommunerna behöver bättre stöd från länsstyrelsen när det gäller granskning av planer.
Länsstyrelsen behöver ha mera kompetens. Vilka sjöar är sänkta. Var finns vandringshinder
Upphävning av inaktuella vattendomar och dammar. Var finns bräddpunkter och hur mycket bräddas? Vattenråd är mer komplicerade att starta än samverkansgrupper.
Våtmarker: Öka intresse och förtroende och att det utvärderas vad de gör för nytta.
Jordbruk: Lantbrukarna behöver mer än 50 % stöd för våtmarksåtgärder kanske 75-80%. Man förlorar ju mark som ger mindre EU-areaal bidrag (CAP). Behöver också hjälp med administration.
Landsbygdsprogrammet kan ge bidrag upp till 100 % för våtmarker och skyddszone.
Nakna hästhagar ger problem, ingen vet hur många hästar som finns.
Använd andra gödselmedel än kalksalpeter.

Enskilda avlopp- Kanske förbjuda markbäddar, tillstånd begränsat i tid.

5.3.2 Intervju 7. Handläggare för vattenförvaltning vid Länsstyrelsen i Stockholms län, 2011-12-01.

Länsstyrelsen/miljöanalyssvavelingen har till viss del även egen övervakning specifikt avseende vattenförvaltningen inom länet. Informationen om tillståndet i vattenförekomsterna sammanställs i "Status" som är kvoten mellan det faktiska tillståndet och det man vill uppnå. Man utgår från ett opåverkat referensvatten (ett för landet representativt urval av sjöar och vattendrag samt grundvattenförekomster som inte direkt är påverkade av utsläpp eller intensiv markanvändning utvalda av Naturvårdsverket) av liknande typ från en förindustriell tidpunkt. Det är den sämsta faktorn som styr statusen varav biologin är en extra stark faktor i bedömningen där SLU medverkat till hur bedömningen skall ske.

Vattendirektivet kopplar till andra direktiv som skall uppfyllas för att vi skall uppnå minimikravet som land. Svenskt fokus har varit på miljökvalitetsnormerna hittills men åtgärdsprogrammen har också krav som skall implementeras. EU har kommenterat hur Sverige mäter effekterna av åtgärder, som enligt reglerna i Sverige innefattas i egenkontrollen och inte samlas in, och där behöver en förbättring göras. Vattenmyndigheten är inte ansvarig för att normerna och åtgärdsprogrammen följs. Myndigheter och kommuner har ansvar enligt sina bemyndiganden om att länsstyrelsen har tillsyn enligt gällande förordningar. Alla som verkar i vatten har ett ansvar att upprätthålla miljökvalitetsnormerna. Åtgärdsprogrammen riktar sig till myndigheter och kommuner, inte till enskilda personer. Även länsstyrelsen har krav i Vattenförvaltningens åtgärdsprogram gällande bl.a
omprövningar och planer som skall vara uppfyllda 2012. I dag finns ett vattenråd i länet, i Stavbofjärden, Södertälje. Ett vattenråd i Himmerfjärden håller på att bildas. Vattenråd är en mer formell organisation än de olika typer av samverkansgrupper som finns kring vatten i Stockholms län och där länsstyrelsen ofta är representerad.

Viktigast för en samverkansgrupp är just möjligheter till samverkan och konsekvensanalys, avvägning av vad som är ekonomiskt rimligt, möjligheten att söka pengar gemensamt för att uppnå egna mål och så klart, att genomföra åtgärder.

5.4 NOS-Dagvatten

5.6 Oxunda vattensamverkan

6 Vertikala länkningar
Här följer en översikt av de verksamheter som finns inom Märstaåns avrinningsområde och har stor påverkan på Märstaåns vattenkvalitet. Avsnittet baseras på litteratur samt för arbetet genomförda intervjuer.

6.1 Märstaåns samverkansgrupp

6.2 Sigtuna kommun
Arbetet med vattenlandskapet sker på många olika sätt inom Sigtuna kommun. Den mest prioriterande verksamheten gällande vattenförvaltning är att identifiera och åtgärda orsaken till vattenföroreningar.

Ett viktigt område är hanteringen av dagvatten, d.v.s. regn och smältvatten från hårdgjorda ytor samt diffusa utlopp från övrig mark som jordbruksmark, skogsmark mm. Åtgärder här är anläggandet av dammar och våtmarker samt återskapande av naturliga vattenlandskap som vattendrag, strandängar och översilningsytor (Sigtuna kommun: Arbete mot bättre vatten). I nedanstående avsnitt följer resultatet från tre intervjuer med tjänstemän på Sigtuna kommun.

Intervju 3. Miljö och hälsövårdsinspektör Sigtuna kommun 2011-11-18
Arbetet med vattenmiljöfrågor i kommunen är idag knutna till EU:s ramdirektiv för vatten via miljöbalken, vattenförvaltningsförordningen och plan och bygglagen som är styrande för kommunen. Dessutom finns normer och föreskrifter från Vattenmyndigheten, Länsstyrelsen, Naturvårdsverket, SGU, SLU, SMHI mm. Tillsammans med några omkringliggande kommuner har man tagit fram en dagvattenpolicy med tillhörande bilaga, Åtgärder och tillämpning”, som ger detaljerade anvisningar för dammar, översilningsytor, våtmarker mm (Oxunda vattensamverkan 2007).

40
Kommande aktiviteter framöver är bl. a samordnad recipientkontroll dvs. att mäta de parametrar som länsstyrelsen har idag i utloppet men dessutom lägga till kiselalger eftersom det är kiselalger och bottenfauna som ligger bakom länsstyrelsens gradering till ”måttlig status". Bottenfauna undersöks i dag var 5:e år men ev. kan extra kontroll införas. En annan aktivitet kommunen arbetar med är en förändring av avrinningsområdets gränser då bana 3 har påverkat vattenavrinningen. Kommunen arbetar också för en uppdatering av VISS-kartan över Mårstaån vars kulvertering i Moralundstunneln inte framgår och där Kättstabäcken är huvudfära. Man diskuterar också Fortums planerade reningsdammar och placering av utloppet för kondensvatten i Steningeviken som alternativ till utlopp via Mårstaån.

Något öppet alternativ till Moralundstunneln har aldrig diskuterats. Ett antal vattendomar finns i området vilket skulle göra det mycket komplicerat (Intervju 4).

Intervju 10 Chef Stadsbyggnadskontoret Sigtuna kommun 11-12-15

Genomgång av de olika dagvattendammar och biflöden till Mårstaån som finns inom avrinningsområdet. Stadsbyggnadskontoret berättade att man saknar mätvärden när det gäller flöden på flertalet ställen utmed Mårstaåns sträckning och överlämnade den information som finns idag.

6.3 Swedavia - Stockholm-Arlanda Airport

Nedanstående avsnitt baseras på Intervju 8 med en miljörådgivare och en miljöingenjör anställd på Swedavia. Intervjun genomfördes den 2011-12-01. Swedavia, tidigare LFV, är ett affärsdrivet och statligt flygplatsbolag som ansvarar för drift och utveckling av 11 svenska flygplatser bl. a Stockholm Arlanda Airport

Swedavia deltar i Mårstaåns samverkansgrupp. Man är 6 personer på miljöstaben varav 1 person arbetar med vatten. På tekniska avdelningen är det 3 personer som arbetar med mark och vattenfrågor.

För den nya dammanläggningen vid Halmsjöbäcken har man gjort en risikanalys av möjligheten till fågelkollisioner för flygplan. En årsrapport för dagvatten detaljerar de flöden som finns inom flygplatsområdet. Ovanför Kättstadammen ligger Horssjön vars humusrika bruna vatten är synligt nere vid punkt F framförallt på våren, härifrån kommer mycket gödningsämnen och organiskt
material från skogen. Förändringarna vid bana 3 innebär att avrinningsområdet i SMHI:s karta är felaktigt vid bana 3 som är infångad för att gå till utjämningsdammen, det finns en liten svacka som går åt andra hållet.

Det finns ett influensområde, se Figur 1, där man vill begränsa anläggandet av vattendammar pga fågelrisken. Swedavia gör en individuell platsbedömning från fall till fall när utbyggnader av våtmarker mm planeras i närheten av flygplatsen. Då följs sedvanliga rutiner där kommuner/länsstyrelser låter verksamheter m.fl. som ligger i närheten och som kan påverkas att yttra sig och lämna in synpunkter. Swedavia har inga specifika regler för olika typer av planerad förändring, men tillämpar särskild försiktighet inom området 3 km vid sidan om rollbana och 5 km ut i inflygningssektorn (banförlängning), men dessa mått kan inte refereras till som ”regler”.

I MKB kap 7 sid 7.66 skriver man att man vill medverka till anläggandet av våtmarker längs med Märstaån i samverkansgruppens regi. Det som behövs för Märstaån är luftning, oxidering av metaller, sedimentering och utjämnning samtidigt som kväve och fosfor finns med i tankarna. Swedavia tror mycket på arbetet i samverkansgruppen bl. a att det är viktigt är att informera varandra och kunna göra gemensamma åtgärder och mätningar. Samverkansgruppen behöver en utökad recipientkontroll för att förstå varifrån föroreningarna kommer, framförallt vid Odensalabäcken.

Swedavias verksamhet inom vattenområdet är främst beskriven i dokumenten (Swedavia 2011):

- Sammanfattning av mark och vatten 2010
- MKB kapitel 7 Påverkan på vattensystem
- MKB Teknisk beskrivning del 1, 6.13 Dagvattensystem

6.4 Fortrum Heating Scandinavia

Nedanstående avsnitt baseras på Intervju 9 som gjordes med miljöansvarig för projekt Brista 2 på Fortum den 8 december 2011.

Utsläppsnivågränser finns i domen, framförallt en skärpning för ammonium. Någon utbyggnad av den befintliga anläggningen, block 1, är inte aktuell idag.

Fortum anser att samverkansgruppen är viktig framöver för lära känna Märstaån och hur den påverkas. Gemensamma mätningar är på gång för att förstå hur olika aktiviteter påverkar Märstaån.

6.5 Lantbruk i avrinningsområdet (LRF)
Nedanstående avsnitt är en sammanställning av intervju 5 med en av lantbrukarna i Måbydalen, intervjun genomfördes 2011-11-24.

Vätmarker finns inte i avrinningsområdets lantbruk och inga är planerade. Skyddszoner mot Märstaån och Kättstabäcken har diskuterats. Om man har en skyddszon på 6m till dike eller vattendrag kan man få EU-bidrag som täcker inkomstbortfallet fullt ut. Bidraget är dock förenat med viss byråkrati, inspektioner och ett 5-årigt åtagande vilket gjort att lantbrukarna tvekatt att etablera skyddszoner, någon har själv infört en skyddszon på 3m gentemot vattendragen.

LRF har ett program som heter ”Greppa näringen” som bl. a fokuserar på fosforutsläpp. Här ingår delarna ändrad jordbearbetning, dikenhantering, plöjningsteknik, gödselvariation mm och är väl kända av lantbrukarna då man nyligen genomgick en EU-finansierad kurs i ämnet på 3 halvdagar. Lantbrukarna tillämpar delar av programmet, bl. a minskad plöjning på hösten och övergång till kultivering som är grundare än traditionell plöjning. Man försöker också använda fasta körspar för att få mindre markpackning. De styva lerjordarna i området må annars bra av höstplöjning och frysning under vintern för att sönderdela jordarna. Av de 170 ha man odlar på ett lantbruk är 110 ha sådda med höstvete som skördas i augusti och nu står gröna.

Lantbrukaren försöker använda så låga gödselgivor som möjligt då inget mervärde fås av övergödning. En markkartering gjordes av hushållssällskapet 2003 som grund för gödslandet vilket görs en gång per år med NPK P5/K5 gödsel bestående av 25% kväve, 5% fosfor och 5% kalium. De nya GPS-metoderna för precisionsfördelnings och IR-sensor baserad kvävegödning är fortfarande för dyra och komplicerade men används på några större granngårdar.
Vägen framåt för Märstaån/Kättstatabäcken är enligt lantbrukarna att förstå hur mycket den egna odlingen bidrar med i förhållande till andra aktörer, kanske också att se hur någon bäck med bra mätvärden är anlagd och hur den fungerar.

6.6 SÅAB/RagnSells

SÅAB (Sigtuna återvinning AB) är ett bolag som ägs till största delen av Ragn-Sells, delägare är Sigtuna kommun. Ragn-Sells är, förutom att vara ägare i SÅAB, också via sitt bolag Ragn-Sells Avfallsbehandling AB den entreprenör som driver verksamheten på Brista åt SÅAB.

Enligt SÅAB:s representant är det alldeles för tidigt att svara på vilka planerna är för nya dammar och eller våtmarker framöver. Hela verksamheten och kommande verksamheter skall prövas i en ny tillståndsansökan.

7 Analys

Den insamlade informationen, kartor, dokument och intervjuer har strukturerats och analyserats med hjälp av de teorier som presenterats i kapitel 2. Hägerstrands förloppslandskap har huvudsakligen använts för att identifiera de fysiska förändringarna i landskapet över tid. De regionalgeografiska horisontella och vertikala länkningarna har huvudsakligen använts i syfte att besvara mina frågeställningar och de hypoteser som rör den verksamhet olika aktörer bedriver inom och utom Märstaåns avrinningsområde.

7.1 Våtmarkernas förändring i Märstaåns avrinningsområde

När det gäller Halmsjöbäcken så är nedre delen vid Måby/Broby identisk med vad vi ser på kartan från 1636, Figur 13. Övre delen vid Arlanda är till största delen kulverterad eller försedd med ny sträckning. Kättstatabäckens nedre flöde är helt uträtat och en ny fåra finns nu till punkt F, se Figur 15. Odensalabäcken, Rosersbergsbäcken, Moralundsbacken och Lill-Bristabäcken har i stort sina
naturliga flöden numera. Mindre smådiken synliga på skifteskartorna är igenlagda till största delen genom den täckdikning som skedde på 1800-talet.

7.2 Planer för god ekologisk status till 2015 (2021)

7.3 Fortsatt verksamhet i Märstaåns samverkansgrupp
Märstaåns samverkansgrupp har idag god insikt i de regler som gäller för hanteringen av Märstaåns avrinningsområde genom sin sammansättning med personer från olika verksamhetsområden (Intervju 7) och man har en numera också en samsyn på vad som menas med god status för Märstaåns vatten och arbetar aktivt med hur denna status skall övervakas (Intervju 3).

I jämförelse med rapporten från Oxunda avrinningsområde (Andersson 2011 s19) känner sig samverkansgruppen här mer införstådd med den kravstruktur som nu finns då flera personer var, och är, med i Oxundagruppen. Länsstyrelsen har också genomfört en ”Vattenverkstad” då dessa frågor diskuterats. Som framkom på detta möte är man dock fortfarande på den lokala nivån något osäker på hur den regionala nivån arbetar (Seminariet Vattenverkstad).

Samverkansgruppen deltagare har olika roller som t.ex ansvarig myndighet eller privat företag. När det gäller frågan hur man skall arbeta för att uppnå god status i vattenförekomsten innebär detta att man kan ha olika prioriteringar på vad som är viktigt och behöver åtgärdas samt hur finansieringen skall löses.
Fokus för närvarande är att få en bättre förståelse för hur de olika delarna av avrinningsområdet påverkar den slutliga vattenkvaliteten vid Steningeviken samtidigt som man vill kunna skapa ett system för uppföljning av den effekt som olika vattenvårdande åtgärder har (Intervju 3,7). Detta stämmer också med vad Hammer framhåller som viktigt i sin studie av Oxunda avrinningsområde (Hammer et al. 2011 s215).

Figur 33 visar dagvattenshuvudfloden inom avrinningsområdet samt information om kända medelvattensflöden i l/s och visar att de årliga flödenen av kväve, fosfor och organiska ämnen. Noteras bör att dessa värden varierar kraftigt beroende på årstid, nederbörd och temperatur.

Medeltransport 2003-2008
P 1133 kg/år 99 µg/l
N 22638 kg/år 1520 µg/l
Diskussion

Efter att ha slutligen analyserat det insamlade materialet vill jag påstå att Märstaåns avrinningsområde är unikt med sin flygplats och sina industrier i Arlanda stad, allt sammanvävt med levande jordbruksmarken eller som Hägerstrand skulle ha sagt:

"Bebyggelsen har under växlande demografiska, ekonomiska och tekniska omständigheter placerats ut över en fysiografisk mosaik av växlande karaktär"

Den största delen av byggnationen efter den industriella epokens uppstart på 1950-talet har skett i skogsområden (Steninge, Valsta) eller när det gäller Arlanda på marker utan större innehåll av jordbruk. Märstaåns kulvertering har väl kompenserats med omfattande anläggningar av våtmarker och dammar i Måbydal och Steningedalen av både stort estetiskt och ekologiskt värde. Här saknar jag dock en gångförbindelse mellan Märsta vattenpark och Brista dammar som annars medgivit en obruten vandringsled från Halmsjöbäckens nedre flöde vid Måby ända ner till Steningeviken.

Viktigt nu är att behålla intresset och engagemanget i gruppen på en hög nivå framöver. För verksamheten 2012 och framåt vill jag förespråka en tydligare uppdelning i delprojekt formade efter de mål som samverkansgruppen prioriterar för varje år. Projektdelegationen från olika aktörer borde utses och en delprojektledare tillsättas. För att underlätta och förenkla verksamheten i delprojektet bör varje aktör bära sina egna kostnader. Troligtvis behövs också en fristående projektsamordnare för koordinering och uppföljning, kanske samfinansierad av de större aktörerna och med arbetsplatsen varierande efter var behov finns.

8.1 Visionslandskapet

Slutligen vill jag knyta an till samverkansgruppens vision “Samarbetet i avrinningsområdet är ett föredöme i landet och vårt gemensamma vatten gör oss stolta och förväntansfulla inför framtiden” (Samverkansdokument 2011) och föra fram två förslag.

1 Den estetiska aspekten när det gäller våtmarker och dammar vid Arlanda är lite beaktad. En parkanläggning runt Tulldammen med förbindelse ner mot Halmsjöns stränder skulle troligen vara uppskattad både av väntande passagerare och intresserade “flygplansskådare”, kanske dock inte bland fågelskådare dock.
I och med utökningen av Fortums kraftvärmeverk och den nya infarten från Norrsundavägen som planeras för Bristaområdet, se Figur 29, borde man också undersöka möjligheten att återställa Bristadalgång och det som tidigare benämndes ”Skvalet”, högre upp vid Roserbergbäcken där den nuvarande Returvägen finns, se Figur 9. Jag som hade förmånen att besöka denna dalgång före vägens tillkomst kommer närmast att tänka på kung Oberons strof i Shakespeares - En Midsommarnattström:

”Jag vet en slänt där timjan växer vilt. Där gräset susar och violer nickar bland vilda rosor, ljung och kaprifolium. Titania brukar sova där en stund vaggad till sömns bland alla dessa blommor av sina alvers sång”

9 Slutsatser
Det insamlade materialet och det utmärkta stödet från de berörda aktörerna har gjort att de ställda frågeställningarna och hypoteserna har kunnat besvaras.

Influensområdet kring Arlanda flygplats omfattar drygt hälften av Mårstaåns avrinningsområde och medför att anläggandet av dammar och våtmarker kommer att avsevärt försvåras eller omöjliggöras. Vägen framåt för bättre vattenkvalitet, enligt deltagarna i samverkansgruppen, är ett ökat fokus på de punktvisa och diffusa källor som finns i landkapet samtidigt som man för vare källa identifierar den mest kostnadseffektiva åtgärden från ett avrinningsområdesperspektiv.

Bland samverkansgruppens deltagare finns stor kompetens när det gäller lagar och förordningar. Man identifierade tidigt behovet av att ha en gemensam syn på vad god kemisk och ekologisk status innebär och det finns med som ett av målen i samverkansdokumentet. Länsstyrelsen i Stockholm är representerad i gruppen och man har en god insikt i kravställningen från regional nivå.

9.1 Fortsatt forskning

När det gäller fortsatt forskning inom området så är det framför allt flödesmodellen, se Figur 33, som kan uppdateras med aktuell flödesinformation för de olika delarna samt också att visa min och maxflöden. Man kan också utöka modellen att omfatta andra ämnen än kväve, fosfor och organiska ämnen. Ett ökat fokus på den ekologiska statusen när det gäller påväxt-kiselalger och bottenfauna kan också vara aktuell då den framhålls som en riskfaktor att god ekologisk status/potential inte uppnås år 2015.

En fortsatt studie av verksamheten inom samverkansgruppen och dess omvandling till vattenråd bör vara ett intressant område att studera och rapportera för att ge kunskapsöverföring (Best practice) till andra vattensamverkansgrupper.

Risken för fågelincidenter för flyget är ett område där våtmarkers inverkan borde studeras och värderas i förhållande till andra områden som t ex. flyttfåglars beteende när det gäller odling av höstvete inom influensområdet för Arlanda flygplats.
Referenser

Intervjuer:
Intervju 1. Kart- och Mätchef Stadsbyggnadskontoret Sigtuna Kommun 20111114
Intervju 2. Stadsbyggnadskontoret Sigtuna kommun 20111117
Intervju 3. Miljö och hälsovårdsinspektör Sigtuna kommun 20111118
Intervju 4. Kommunekolog Sigtuna kommun 20111122
Intervju 5. Lantbrukare Sigtuna kommun 20111124
Intervju 6. Miljöstrateg Sigtuna kommun 20111124
Intervju 7. Handläggare vattenförvaltning Länsstyrelsen Stockholm län 20111120
Intervju 8. Miljörådgivare och Miljöingenjör Swedavia 20111201
Intervju 9. Miljöansvarig för projekt Brista kraftvärmeverk på Fortum 20111208
Intervju 10. Chef Stadsbyggnadskontoret Sigtuna kommun 20111215
Telefon/Epost. Kvalitets- och miljöspecialist SÅAB/RagnSells 20111213
Seminariet Vattenverkstad Länsstyrelsen Stockholm 20111111

Internetlagrade:
Norra Östersjöns vattendistrikt http://www.vattenmyndigheterna.se/Sv/norra-ostersjon/Pages/default.aspx 11-12-13

Tryckta källor:
Utställningshandling DNR BTN 2009/0259-214:M Sigtuna kommun
Fortum ritning(2010); VARME_n242485_y2A_Brista_B2--Avledning_rokgaskondensat_ekonomisk_och_teknisk_utredning.pdf
Feuerbach, Peter (2010): Vatten och mångfald i jordbrukslandskapet. Hushållningssällskapet Hallan/Naturvårdsverket
Gyllenhammar, Charlotte (2011); SAMMANNFATTNING AV MARK OCH VATTEN 2010 STOCKHOLM-ARLANDA AIRPORT Swedavia 2011-03-30
Hammer, Monica/Balfors, Berit/Mörtberg , Ulla/Petersson, Mona/Quin, Andrew (2011); Governance
of Water Resources in the Phase of Change: A case study of the implementation of the EU Water Framework Directive in Sweden, AMBIO 40:210-220

Hägerstrand, Torsten (1986); Den regionalgeografiska problematiken, kurskompendium

Hägerstrand, Torsten (1992); Samhälle och Natur, Rapporter och Notiser 110, Lund

Pansar, Joakim (2010); Länsstyrelsen i Stockholms län – Näringsstillståndet i Stockholms läns vattendrag

NOS vattensamverkan (2011); NOS Slutrapport version 110504. Sigtuna Stadsbyggnadskontor

Oxunda vattensamverkan (2007); Dagvatten i Oxundas avrinningsområde- policy, råd och riktlinjer

www.sollentunaenergi.se/vatten/dokument/Dagvattenpolicy.pdf

SMHI (2010); Spridningsberäkningar för rökgaskondensat från Brista kraftvärmeverk RAPPORT NR 2010-79

Swedavia/ Viak (2004); TEKNIKT PM 2004-12-21 Våtmarksanläggning Steningedalen

Våtmarksanläggning i Steningedalen, Mästa

Swedavia (2011); http://www.arlanda.se/sv/Information-om/Miljoarbete/Vatten/ 11-12-13

Swedavia (2011); Sammanfattning av mark och vatten 2010. D2011-006976 2011-03-29 V00.01

http://www.arlanda.se/upload/dokument/Milj%C3%B6n/Milj%C3%B6rapportering/Milj%C3%B6rapportering%202010/Sammanfattning%20mark%20och%20vatten%202010.pdf 2011-11-17

Swedavia MKB (2011); Stockholm Arlanda Airport Miljökonsekvensbeskrivning för ansökan om nytt tillstånd enligt miljöbalken - TB del 1 (kap 6.13) och MB (kap 7.5.4.1).

Tollin, Clas (1991); Ättebackar och ödegärden Riksantikvarieämbetet. Uppsala ISBN 91-7192-819-7

Underlagskartor:

Samtliga kartor har projicerats till kommunens projektion för primärkartan SWEREF 18 00 och har norr uppåt.

Kartor från lantmäteriet: ©Lantmäteriet Gävle 2011 Medgivande I2011/0097

VISS data och kartor:©SMHI2011

Primärrkarta: ©Sigtuna kommun 2011

Geometriska kartor 1:5000

A10; 186 Husby-Årlinghundra socken Mästa nr 1 Geometrisk avmätning 1636. Thomas Christiernsson, Renovation, Lantmäteristyrelsens arkiv (LSA), Riksarkivet (Arninge)

A10; 184/185 Husby kyrkby Broby gård 1636, Lantmäteristyrelsens arkiv (LSA), Riksarkivet (Arninge)

http://www.riksarkivet.se/default.aspx?id=21573&refid=22519
Skiftekartor 1:4000 (Historiska kartor)
Husby-Ärlinghundra socken Steninge nr 1 Ägomätning 1764
Husby-Ärlinghundra socken Valsta nr 1-2 Ägodelning 1756
Husby-Ärlinghundra socken Arenberga nr 1-4 Storskifte 1820
Husby-Ärlinghundra socken Arenberga fjäll Storskifte 1800
Husby-Ärlinghundra socken Märsta nr 1 Storskifte på skog_skogsmark 1756
Husby-Ärlinghundra socken Broby nr 1-3 Storskifte 1764
Husby-Ärlinghundra socken Kättsta nr 1-3 Storskifte 1759
Husby-Ärlinghundra socken Måby nr 1-3 Storskifte 1762
01-HUÄ-61 Ls, sämjed 1851 Sätuna, Husby-Ärlinghundra socken Måby nr 1-3
Storskifte 1762, Husby-Ärlinghundra socken Broby nr 1-3 Storskifte 1764,
Husby-Ärlinghundra socken Kolsta nr 1 Storskifte 1760

Häradskartor 1:20 000
112_75-3, 112_75-4, 112_84-17, 112_84-19, 112_84-22, , 112_84-23, 112_84-24 från Sigtuna kommun

Ekonomiska kartan 1:10 000:
Märsta_2d11, Rosersberg_1d54, Skanella_1e541, Odensala_3d55, Steninge_Ekonomiska_1952,
Vidbo_4e55 från Historiska kartor

Vektorkartor Digitala kartarkivet 2010
Terrängkartan vektor 1:50 000
Översiktkartan vektor 1:250 000

Sigtuna kommun Primärkarta (TAB) 2011-11-17:
D_punkt Dagvattenbrunnar
D_ledn Dagvattenledningar
diken Dagvattendiken

2011-11-14 (TAB):
oh_191 Höjdkurvor
ml_191 Marklinjer
ot_191 Höjdsiffror
ar_191 Fastighetsbeteckningar
hl_191 Vattendrag
Ortofoto färg över Steningedalen, Moralundsdalen och Måbydalen

2010-03-31:
vl_191 Vägar
al_191 Fastighetsgränser