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Shallow coastal soft bottoms are important carbon sinks. Submerged vegetation has 
been shown to sequester carbon, increase sedimentary organic carbon (Corg) and thus 
suppress greenhouse gas (GHG) emissions. The ongoing regression of seagrass cover 
in many areas of the world can therefore lead to accelerated emission of GHGs. In Nordic 
waters, seagrass meadows have a high capacity for carbon storage, with some areas 
being recognized as blue carbon hotspots. To what extent these carbon stocks lead 
to emission of methane (CH4) is not yet known. We investigated benthic CH4 emission 
(i.e., net release from the sediment) in relation to seagrass (i.e. Zostera marina) cover 
and sedimentary Corg content (%) during the warm summer period (when emissions are 
likely to be highest). Methane exchange was measured in situ with benthic chambers at 
nine sites distributed in three regions along a salinity gradient from ∼6 in the Baltic Sea 
(Finland) to ∼20 in Kattegat (Denmark) and ∼26 in Skagerrak (Sweden). The net release 
of CH4 from seagrass sediments and adjacent unvegetated areas was generally low 
compared to other coastal habitats in the region (such as mussel banks and wetlands) 
and to other seagrass areas worldwide. The lowest net release was found in Finland. We 
found a positive relationship between CH4 net release and sedimentary Corg content in 
both seagrass meadows and unvegetated areas, whereas no clear relationship between 
seagrass cover and CH4 net release was observed. Overall, the data suggest that Nordic 
Zostera marina meadows release average levels of CH4 ranging from 0.3 to 3.0 µg CH4 
−2 h−1m , which is at least 12–78 times lower (CO2 equivalents) than their carbon 

accumulation rates previously estimated from seagrass meadows in the region, thereby 
not hampering their role as carbon sinks. Thus, the relatively weak CH4 emissions from 
Nordic Z. marina meadows will not outweigh their importance as carbon sinks under 
present environmental conditions. 
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INTRODUCTION 

Methane (CH4) is a very potent greenhouse gas (GHG), with 
a global warming potential that is estimated to be 28–34 times 
higher than carbon dioxide (CO2) per mole of carbon over 
a 100-year period (Myhre et al., 2013). It has been estimated 
that about half of the global CH4 emissions generate from 
aquatic sources, although there is high variability between regions 
and ecosystems (Saunois et al., 2020; Rosentreter et al., 2021). 
Oceanic shelves, although marginal in area compared to deep 
oceans, contribute to about 75% of the CH4 emission from 
oceans worldwide (Bange et al., 1994). Methane in the marine 
environment is mainly produced in sediments during anaerobic 
degradation of organic matter by methanogenic archaea (Bakker 
et al., 2014; Wilson et al., 2020). The produced CH4 may 
be oxidized to CO2 in the sediment or released to the water 
column in solution by di�usion, via plant–tissue or as gas 
bubbles (Reeburgh, 2007; Je�rey et al., 2019). Generally, only 
a small portion of the produced CH4 eventually reaches the 
atmosphere, since most CH4 is oxidized by microorganisms 
in the sediment and water column (Reeburgh, 2007). Seeping 
bubbles released from sediments lose most of their CH4 content 
during their passage through the water column and the extent 
of that loss depends on the bubble size and water depth (Weber 
et al., 2019). This explains why most marine CH4 emissions 
derive from the nearshore coastal environment, where there is 
less likelihood that the CH4 is oxidized before reaching the 
atmosphere (Weber et al., 2019). 

Natural wetlands, i.e., vegetated ecosystems where the soil 
is water-saturated for most part of the year and which 
store large amount of carbon in their soils, account for 20– 
30% of the global yearly CH4 emissions and are thus the 
single largest non-anthropogenic source of CH4, adding up 
to 164 Tg yr−1 to the atmosphere (IPCC, 2001; Bridgham 
et al., 2013; He et al., 2015). In the coastal zone, vegetated 
habitats (i.e. saltmarshes, mangroves, and seagrass meadows) 
are estimated to emit around 4 Tg yr−1 (Al-Haj and Fulweiler, 
2020). This emission level is hence low compared to their 
terrestrial counterparts, although greater than the release from 
open oceans, which are estimated to release between 0.4 
and 1.8 Tg yr−1 (Rhee et al., 2009; Borges et al., 2016). 
Photosynthetically derived oxygen from submerged plants can 
potentially be used by methane-oxidizing bacteria (MOBs) in 
the sediment and water column, converting CH4 to CO2, and 
thereby hinder emission of CH4 to the atmosphere in these 
submerged vegetated ecosystems (Laanbroek, 2010). This may 
contrast with conditions in terrestrial and coastal wetlands where 
vegetation is emerged, i.e., in direct contact with the atmosphere, 
and therefore CH4 will be released without being processed in 
the water phase by MOBs (Laanbroek, 2010). Up to 90% of 
the CH4 produced in sediments with submerged vegetation can 
be reoxidized in the water column (King et al., 1990), but if 
the oxygen levels are low, due to for instance stagnant waters 
and during high consumption rates, the CH4 may be emitted 
to the atmosphere. 

High organic loading and anoxic sediments provide 
conditions for long-term storage of refractory carbon. 

Consequently, coastal vegetated ecosystems such as saltmarshes, 
mangroves, and seagrass meadows are eÿcient sinks of 
atmospheric CO2 and referred to as blue carbon habitats 
(e.g., Mcleod et al., 2011; Duarte, 2017; Howard et al., 2017). 
However, the same conditions that make these habitats 
ideal for carbon storage also provide the potential for CH4 
production (Al-Haj and Fulweiler, 2020). Conditions that 
favor methanogenesis could tip these coastal habitats from 
sinks to sources of CO2 and CH4 and thereby accelerate 
the greenhouse e�ect. It is therefore of great importance to 
understand the conditions governing the release of CH4 and 
other GHGs from these habitats. Studies from tidal saltmarshes 
show that CH4 emission is strongly salinity dependent, with 
signifcantly lower emissions at salinities over 18 (Po�enbarger 
et al., 2011), while in fresh- to brackish water marshes such a 
salinity-driven threshold has been reported to occur already 
at salinities above 10 (Wang et al., 2017). In peatlands, sulfate 
reduction inhibits methanogenesis and the release of CH4 
is low (Dowrick et al., 2006). However, in anoxic marine 
sediments, sulfate reduction and methanogenesis may co-occur 
(Oremland and Taylor, 1978; Holmer and Kristensen, 1994; 
Sela-Adler et al., 2017). 

Seagrass meadows have been reported to naturally emit 
low to moderate levels of CH4, ranging from 2–5 (Oremland, 
1975) to 378 µg m−2 h−1 (Garcias-Bonet and Duarte, 2017). 
This is substantially lower than what has been observed in 
other marine habitats; for example, saltmarshes can emit over 
10,000 µg m−2 h−1 (Whiting and Chanton, 1993). However, 
stressors (such as light reduction, habitat fragmentation, and 
warming) can dramatically increase CH4 emission in seagrass 
systems (Lyimo et al., 2018; Burkholz et al., 2020; George 
et al., 2020). Vegetation loss or alteration in macrophyte 
species composition may also stimulate methanogenesis in the 
sediment (Sutton-Grier and Megonigal, 2011; Lyimo et al., 2018; 
Al-Haj and Fulweiler, 2020). 

In the Nordic region, seagrass meadows have high capacity for 
storing large amounts of carbon in the sediment, in particular, 
some sites along the Swedish Skagerrak coast are suggested to 
be global hotspots for blue carbon (Dahl et al., 2016; Röhr 
et al., 2018; Moksnes et al., 2021). It is previously known 
from the coastal southern Baltic Sea that CH4 emissions are 
positively correlated to the organic carbon content in sediments 
(Heyer and Berger, 2000). Therefore, it is of particular interest 
to study blue carbon habitats, such as seagrass meadows, 
that may store large amounts of organic carbon (Corg ) in 
their sediments to understand the fate of stored carbon as 
potential sources for GHG emissions. No previous reports 
have, however, focused on CH4 emissions from Zostera marina 
beds in northern European coastal waters. In the current 
study, we aimed to investigate (i) the extent and variability 
in CH4 (g) emission from seagrass (Z. marina) dominated 
coastal soft bottom sediments in three regions along the 
salinity gradient from the Baltic Sea to the North Sea, (ii) 
to what degree vegetation cover (in terms of Z. marina) 
modifes CH4 (g) emission from the substrate, and (iii) 
whether CH4 (g) emission is correlated to the sedimentary 
organic carbon content. 
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MATERIALS AND METHODS 

Study Area 
Nordic coastal areas are of particular interest since they stretch 
from the Baltic Sea, which is a semi-enclosed water body and 
one of the largest brackish water areas in the world, to the 
marine environments of Skagerrak and Kattegat through the 
Danish straits (Storebælt, Lillebælt, and Öresund). The region is 
therefore characterized by a strong, large-scale salinity gradient 
from freshwater conditions (0–2) in the Bothnian Bay to marine 
conditions (∼34) in the North Sea (Helcom 2017-2018)1. Coastal 
shallow habitats in northern areas are deemed by climate scenario 
models to be exposed to faster warming than the global average, 
with an expected temperature increase ranging from 2◦C in the 
southern part of the Baltic Sea to 4◦C in the northern part by 
the end of this century (i.e., year 2100, Andersson et al., 2015), 
which may infuence CH4 emissions from coastal blue carbon 
habitats in the future. Further, the coastal waters of the Baltic 
Sea, the Kattegat and Skagerrak are surrounded by nine countries 
and human activities in the area, adding pressure on the seagrass 
ecosystems (Boström et al., 2014). For instance, severe seagrass 
loss of about 60% has been reported on the Swedish west coast 
between 1980s and 2000s (Baden et al., 2003; Nyqvist et al., 
2009). From some of these areas in Sweden where historical 
losses have occurred, it has been estimated that the resulting loss 
of carbon from the sediments could be up to 60 Mg C ha−1 

(Moksnes et al., 2021). 

1http://stateofthebalticsea.helcom.f/ 

The current study was carried out during a warm summer 
period (with water temperatures ranging from 20 to 23.5◦C; see 
Supplementary Table 1) in August 2018 in Z. marina meadows 
and adjacent unvegetated areas within three regions, along the 
salinity gradient stretching from the Baltic Sea archipelago west 
of Turku in Finland (three sites) to the fjords east of Fyn Odense 
in Denmark (two sites) and the Gullmar Fjord on the Swedish 
Skagerrak coast (four sites) (see Figure 1 and Table 1). At the 
Finnish study area, Z. marina grows at the lower end of its salinity 
propagation limit (∼6), while the Danish sites have intermediate 
salinities (∼20) and the Swedish sites have salinities varying 
between 18 and 30 in the surface waters, with a yearly average 
of ∼26. Water temperatures were between 20 and 23.5◦C in all 
study areas during the sampling period. In Finland, the sites are 
moderately exposed, and the sediment consists mainly of fne 
to coarse sand with low levels of organic content. In Denmark, 
the Nyborg site is exposed to easterly winds and the sediment 
is sandy with a low organic content, while the Holckenhavn 
Fjord is sheltered, and the sediment is siltier with a low organic 
content. In Sweden, the sites are situated in shallow bays exposed 
to di�erent levels of hydrodynamic forces and the topmost layers 
in the sediments are sandy, silty, or muddy. 

Incubation Chambers for Sampling CH4 
at Sediment–Water Interface 
Incubation chambers, produced by transparent Plexiglas cores 
(inner diameter: 4.7 cm, height: 45 cm; Figure 2) containing an 
air-flled gas pocket with a gas-tight septum for extraction of 

FIGURE 1 | Map of sites (green dots, n = 2–4) in the three sampling regions (countries) with average methane emissions from sediments in seagrass meadows and 
unvegetated areas in each region as well as overall for all countries. 
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TABLE 1 | Sampling design showing number of replicates, water depth and water temperature in seagrass meadows and adjacent unvegetated habitats at the different 
sampling sites, and mean salinity for each of the three sampling regions. 

Sampling regions Seagrass replicates Unveg. replicates Seagrass depth Unveg. depth Temp. (◦ C) Salinity (mean) 

Sites (n) (n) (m) (m) 

Finland (Fin) 6 

Fårö 6 6 2 2 20 

Hummelskär 6 6 2.1–2.2 2.3–2.4 20 

Ängsö 6 6 2–2.3 2–2.1 20 

Denmark (Den) 20 

Holckenhavn Fjord 6 6 2 2 21 

Nyborg 5 5 2.5 2.5 23.5 

Sweden (Swe) 26 

Getevik 6 6 2.2 2.6 21.5 

Kristineberg 6 4 3.1 3.5 21.6 

Skallhavet 6 6 2.2 2 22.3 

Gåsö 6 6 2.5 2.7 23.5 

FIGURE 2 | Deployed incubation chamber in a seagrass meadow (left) and collection of a gas sample (top right). Illustration (bottom right) of the sampling 
methodology using an incubation chamber inserted 15 cm into sediment with a 20 cm water column above the sediment. On the top, a 5 cm air-pocket is 
connected to a gas-tight septum from where a gas-sample (including methane) released from the sediment could be collected (using a syringe). Gas-samples were 
extracted periodically after insertion from the chamber and stored in gas-tight exetainers until analyzed with gas-chromatography (GC). Photos: K. Gagnon. 

gas samples, were placed in seagrass meadows (n = 6) and in 
adjacent unvegetated areas (n = 5 or 6) at 2–3 m water depth using 
scientifc (SCUBA) diving. For details of the sampling regions 
and sites, see Table 1. The start time for incubations was set to 
around 10 am to catch the midday hours when productivity is 
expected to be highest. The chamber cores were pushed down 
15 cm into the sediment, leaving a 20-cm water column and a 5-
cm gas pocket (volume: 87 cm3) above the water in the chamber. 
A “start” gas sample (5 mL) was withdrawn from the pocket about 
10 minutes after placing the chamber into the sediment and the 
time was noted. The incubations were conducted for about 5–6 h, 
whereafter an “end” gas sample was extracted from the gas pocket 
and the ending time was noted. The gas samples were directly 

transferred into gas-tight exetainers containing 58.3 mM zinc 
chloride (aq) for storage and to prevent any potential bacterial 
breakdown of CH4 until analysis. The exetainers were stored 
upside-down in the refrigerator (4◦C) until analysis. At the 
Swedish sites, the development of CH4 release in the chambers 
was observed at several time points during the incubation period 
to follow and confrm linearity in the CH4 release. 

Salinities and temperatures were measured at each site prior 
to incubations. In the seagrass sites, seagrass shoot density 
(shoots per m2) were either measured, in feld, in quadrats 
(25 × 25 cm, n = 6) or measurements from previous studies 
(Gullström et al., 2012; Staveley et al., 2017) (see Supplementary 
Table 1) were used. 
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Analysis of Methane 

The gas in the collected exetainer samples were analyzed by 
means of headspace analysis and gas chromatography (GC). 
Briefy, 1 mL headspace was injected into a gas chromatographer 
(GC 8A, Shimadzu Corporation) equipped with a Porapak N 
column (80–100 mesh) and a fame ionization detector (FID). 
The carrier gas for the FID was nitrogen, while the fuel gas 
was hydrogen and the oxidant air. For calibration, certifed 
standards at atmospheric concentration (1.9 ppm) and with 
49.9 ppm CH4 (AirLiquide Gas AB) were used. Using the Ideal 
Gas Law (PV = nRT), the ppm concentrations were converted 
into molar concentrations (µmol CH4 L−1), which were plotted 
against incubation time. The CH4 emissions per surface area 
of the sediments were calculated as the total amount of CH4 
accumulating over time within the gas-flled pocket of the 

−2 h−1incubation chamber and reported as µg CH4 m . Since 
measurements were only conducted during daytime, values were 
not extrapolated to full diurnal estimates. 

Collection of Sediment Cores 
After incubation, a sediment core was collected adjacent to each 
incubation chamber using a push corer (diameter: 4.7 cm, height: 
60 cm). The cores were sliced into three di�erent depth sections: 
0–1 cm representing the oxidized zone, 1–15 cm representing the 
rhizosphere and below 15 cm representing the sediment without 
living seagrass. Sediment compression was accounted for in all 
cores by measuring the distance from the top of the core to the 
sediment surface, inside and outside the core after being inserted 
into the sediment (Glew et al., 2002). 

Analysis of Organic Carbon Content in 
the Sediment 
Sediment core slices were weighed wet, homogenized and a 
subsample of 60 mL from each depth was then dried (60◦ C, 
∼48 h) until constant weight, whereafter the dry bulk density 
(g DW cm−3) was calculated. The dry sediment samples were 
grinded to a powder using a Retch 400 mixing mill for subsequent 
carbon analyses. The total carbon and nitrogen content (% 
C and % N) in each sediment depth section was analyzed 
using a carbon–nitrogen elemental analyzer (Flash 2000, Thermo 
Fisher Scientifc). Previous research in the studied regions have 
documented that the inorganic carbon content generally is low 
(<5%) and was therefore not accounted for Röhr et al. (2016); 
Dahl et al. (2020). 

Data Analysis 
Variations in CH4 emission rates were compared between 
the di�erent regions for the two habitat types, i.e., seagrass 
meadows vs. unvegetated areas separately, and then overall 
between seagrass meadows and unvegetated areas, using non-
parametric Kruskal–Wallis tests (since with the log10[x + 1] 
transformation, homogeneity of variance was not achieved). 
A Bonferroni correction of the signifcance level was applied 
for multiple testing to limit the probability of Type 1 error 
(Holm, 1979). Potential relationships between CH4 emission 

and environmental variables such as sedimentary Corg content 
and seagrass shoot density, respectively were tested with linear 
regression analysis. All data analyses were performed in IBM 
SPSS statistics (version 27). 

RESULTS 

The CH4 emissions were generally low but varied substantially 
both within and between sites, resulting in a net release of CH4 
to the air phase ranging from 0.3 to 1.8 µg CH4 m−2 h−1 at 
the Finnish sites to 2.0–2.5 µg CH4 m−2 h−1 at the Danish sites 
and 0.4–3.0 µg CH4 m−2 h−1 at the Swedish sites (Figures 1, 3). 
Pairwise comparisons showed that the overall CH4 emissions 
from seagrass meadows were signifcantly higher in both the 
Swedish and Danish sites when compared to the Finnish sites, 
while there was no signifcant di�erence between the Swedish 
and Danish sites (Table 2). For the unvegetated areas, CH4 
emissions were signifcantly higher in the Swedish sites compared 
to the Finnish sites (Table 2). Overall, there was no di�erence in 
emissions between seagrass covered- and unvegetated sediments, 
even though di�erences between these habitat types occurred at 
some sites within each region (Table 2 and Figure 3). 

Methane emission increased along the salinity gradient 
(Figures 1, 4), although this pattern likely also is refecting the 
inherent conditions of the three regions. The mean integrated 
(0-15 cm) organic carbon (Corg ) content in the sediment varied 
between 0.1 and 6%, with the largest levels found in the 
Swedish sites (Supplementary Tables 1, 2). There were linear 

FIGURE 3 | Box-and-whisker-plot showing the variation of methane emission 
from the sediment to the gas-flled pocket in the incubation chambers of 
seagrass meadows and adjacent unvegetated areas in Finland (FIN), Denmark 
(DEN), and Sweden (SWE). The solid lines within the boxes indicate median 
values, the boxes represent the 25th to the 75th percentiles and the vertical 
whisker bars show the 5th and 95th percentiles of the data. 
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TABLE 2 | Summary of non-parametric Kruskal–Wallis tests of methane emissions 
among regions within (seagrass meadows and unvegetated areas) and between 
habitats. 

Pairwise Test statistic Std. error Std. test statistic Adj p 
comparison 

Region-seagrass (total N = 51, df = 2, model p = 0.005) 

Fin vs Den 14.483 5.823 2.487 0.039 

Fin vs Swe −14.479 4.798 −3.018 0.008 

Den vs Swe 0.004 5.413 0.001 1.000 

Region-unvegetated (total N = 47, df = 2, model p = 0.002) 

Fin vs Den 7.321 5.443 1.345 1.000 

Fin vs Swe −16.010 4.635 −3.454 0.003 

Den vs Swe −8.688 5.103 −1.703 0.532 

Habitat (total N = 98, df = 1, model p = 0.806) 

Signifcant values (p < 0.05) are shown in bold. Countries with bolded text indicate 
the higher values in the pairwise comparisons. Std. error, standard error, Adj p, 
Adjusted p-value. 

FIGURE 4 | Box-and-whisker plot summarizing methane emissions from the 
sediment to the gas-flled pocket in the incubation chambers in seagrass 
meadows and adjacent unvegetated areas in relation to average salinities in 
the different regions. The solid lines within the boxes indicate median values, 
the boxes represent the 25th to the 75th percentiles and the vertical whisker 
bars show the 5th to the 95th percentiles of the data. 

relationships between sedimentary Corg and CH4 emissions in 
seagrass meadows (Adj R2 = 0.12, p = 0.01, Supplementary 
Figure 1A) and in unvegetated areas (Adj R2 = 0.21, p < 0.01, 
Supplementary Figure 1B), respectively, although the adjusted 
R2 value were low indicating that there are other factors 
infuencing the CH4 mean net release. 

Seagrass meadows average shoot densities, as presented 
in previous works, varied from 101 to 652 shoots m−2 

(Supplementary Table 1). There was no signifcant relationship 

between the average seagrass shoot density and CH4 emission in 
the current study. 

DISCUSSION 

This study shows that CH4 emissions from cold-temperate 
Nordic seagrass meadows are relatively low, both when compared 
to seagrass areas worldwide and when compared to other 
shallow-water habitats in the Nordic region. The amount of 
Corg stored in the sediment appeared to infuence the emissions, 
as there was a positive correlation between CH4 emission 
and the sedimentary organic carbon content. The relatively 
low explanatory value suggests that besides the sedimentary 
Corg content, there must be other factors that are of major 
importance for methane release from these coastal sediments. 
Nevertheless, we found no signifcant infuence of vegetation or 
salinity on CH4 emissions. The current study was conducted 
during the warm high-productive season, when also the net 
release of methane is expected to peak, and represents the frst 
survey of methane emissions from seagrass meadow sediments 
in Nordic coastal waters. 

Methane net release from Z. marina meadow sediments varied 
−2 h−1from 0.3 to 3.0 µg m . These values are in the lower range 

of what is reported from seagrass habitats globally, which can 
reach up to 378 µg m−2 h−1 (see Table 3). It is further drastically 
lower than reported emissions from other shallow-water habitats 
in Nordic waters like estuarine wetlands (8,583 µg m−2 h−1) 
or brackish-water reed (Phragmites) belts (15,200 µg m−2 h−1), 
(Table 3). The relatively low CH4 emission levels measured in our 
study agree well with those reported for coastal bare sediments 
(1.2–2.3 µg CH4 m−2 h−1) of the Baltic proper (Bonaglia et al., 
2017). Those sediments had similar carbon content as on the 
Swedish west coast (5.5%) and similar salinities as in the Finnish 
areas (6.8), but were sampled deeper (50 m) and at much lower 
temperature (8.0◦C) compared to our study (range: 20–23.5◦C, 
Supplementary Table 1). The good agreement in rates may thus 
be explained by the fact that most of the CH4 generated deep 
inside the sediment is eÿciently oxidized by the community of 
methane-oxidizing archaea and sulfate-reducing bacteria before 
it can reach the sediment water-interface (Orphan et al., 2001). 
Up to 90% of the CH4 produced in marine sediments are 
consumed already in the sediment phase (Reeburgh et al., 1993). 

Most studies where high emissions from seagrass habitats have 
been reported are from warmer (warm-temperate or tropical) 
waters (Table 3). This could be due to a temperature dependence 
of CH4 production as well as di�erences in organic matter quality 
and quantity, and in the microbial community composition. 
Temperature is known to signifcantly infuence CH4 production 
both in tropical (Burkholz et al., 2020; George et al., 2020) 
and cold-temperate waters (Heyer and Berger, 2000). In the 
present study, water temperatures were similar across regions; 
nevertheless, di�erences in water temperature on local spatial (cm 
to m) and temporal (day to seasonal) scales could still infuence 
the variation in emission rates, but this was not investigated here. 

We found no signifcant infuence of vegetation cover on 
CH4 emission from the sediments in the seagrass meadows, 
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TABLE 3 | Sediment methane (CH4) emission rates from seagrass meadows 
worldwide and other shallow-water habitats in Nordic waters, using 
sediment-to-air flled pocket chamber techniques, reported in the literature and in 
the current study. 

Region Habitat type Ranges (or References 
average*) of 

emission rates, 
(µg CH4 m−2 h−1) 

Seagrass meadows 
worldwide 

Global estimation Seagrass in general 54* Rosentreter et al., 
2021 

Portugal, Atlantic Zostera noltii 71(at night) Bahlmann et al., 
coast –111 (in day) 2014 

Florida bay Thalassia 14–185 Barber and 
testudinum Carlson, 1993 

France, Atlantic Zostera spp 66 * Deborde et al., 
coast 2010 

Red Sea Halophila 16–74 Garcias-Bonet and 
stipulacea and Duarte, 2017 
Halodule unervis 

Thalassodendron 0.067–4.6 
ciliatum 

Thalassia 0.20–11 
hemprichii 

Halophila decipiens 0.47–11 

Enhalus acoroides −8.0 to 181 

Cymodocea 91–378 
serrulata and 
Halodule uniervis 

Halodule unervis 17–40 

Western Indian Thalassia 50 * (controls), Lyimo et al., 2018 
Ocean hemprichii 224–291 

(disturbed) 

Florida Keys Syringodium sp. 2–5 Oremland, 1975 

Thalassia 29–30 
testudinum 

Nordic waters Zostera marina 0.3–3.0 Current study 

Other shallow-water 
habitats in Nordic 
waters 

North-Eastern Brackish fen, 538–15,200 Koch et al., 2014 
Germany Phragmites 

australis 

Gulf of Bothnia Eustarine wetlands 8,583* Liikanen et al., 
2009 

and unvegetated sediments had similar emissions as the 
vegetated areas. There are, however, reports that submerged 
vegetation, such as seagrasses and other rooted macrophytes, 
signifcantly infuences the microbial composition and actions in 
the sediments (Jensen et al., 2007; Santos-Fonseca et al., 2015; 
Cúcio et al., 2016), with potential e�ects on the GHG balance. 
Seagrasses have been reported to reduce CH4 emissions by their 
photosynthetic oxygen production (Oremland, 1975; George 
et al., 2020) and also by symbiotic CH4 oxidizers associated 
with the plants. 

In some coastal habitats, such as in tidal saltmarshes, CH4 
emission is strongly a�ected by salinity, with lower emissions at 
higher salinities (Po�enbarger et al., 2011; Wang et al., 2017). 

It has been suggested that the higher levels of sulfate found in 
sediments of higher salinity will increase sulfate reduction, which 
in turn could inhibit CH4 production in vegetated habitats (e.g., 
Koebsch et al., 2018). Methane emissions from marine areas 
could hence be expected to be low. In contrast, we found the 
highest emission levels within the region with highest salinities, 
i.e., at the Swedish sites. When the organic carbon loading is 
high, it can be that the inhibitory e�ect of sulfate reduction 
plays a minor role and sulfate reduction and methanogenesis can 
co-occur (Holmer and Kristensen, 1994; Santos-Fonseca et al., 
2015). Therefore, CH4 production can occur in marine areas 
with high organic carbon content, which is also confrmed in 
the current study. 

Even though the emissions we measured from both vegetated 
and adjacent unvegetated sediments were low, the CH4 emissions 
partly counteract the seagrass meadows’ capacity to function as 
carbon sinks. The only published data on carbon accumulation 
rates for seagrasses in the Nordic area (Röhr et al., 2016) show 

−1annual mean values of 0.05 t C ha−1 yr for Finland, and 
0.35 t C ha−1 yr−1 for Denmark, while no accumulation data 
for Sweden has been published. Given in the same units and 
calculated as e-CO2 at a GWP100 of 34 (Myhre et al., 2013), 
the CH4 emissions in this study ranged from 0.0007 to 0.0040 
in Finland, from 0.0045 to 0.0056 in Denmark, and from 0.0009 

−1to 0.0067 t eCO2-C ha−1 yr in Sweden. Thus, the carbon 
accumulation rate in Finland was between 12 and 75 times higher, 
and in Denmark between 63 and 78 times higher, than the 
estimated C emissions from CH4. We therefore conclude that 
the relatively weak emissions of CH4 from Nordic Z. marina 
meadows will not outweigh their importance as carbon sinks 
under present environmental conditions. 

Climate simulations for the Baltic Sea ecosystems indicate a 
2–4◦C warming and a signifcant increase in precipitation by 
the year 2100 that may increase land runo� of allochthonous 
organic matter and decrease salinity (Andersson et al., 2015). 
This might have multifaceted e�ects on the seagrass systems. 
While healthy seagrass meadows contribute to mitigate the 
e�ects of runo� and capture part of the increased input of 
nutrients and organic matter, an increased organic content 
in the sediments might result in increased respiration and 
lower oxidation state of the sediment. A lower oxidation will 
in turn favor anaerobic respiration and might thus lead to 
increased production and emissions of CH4 and other GHGs. 
As temperatures are predicted to increase more drastically in 
the Nordic region than on a global scale (Andersson et al., 
2015), this may accelerate CH4 emissions from blue carbon 
habitats such as seagrass meadows (Yvon-Durocher et al., 2011). 
It has previously been shown in tropical seagrass sediments that 
CH4 emissions more than doubled during high temperature 
stress (George et al., 2020). The Nordic seagrass systems, today 
functioning as e�ective sinks for atmospheric CO2, might thus be 
hampered by climate change e�ects so that their carbon capture 
capacity is reduced while their emission of GHGs is increased. 
This may eventually turn Nordic seagrass meadows from sinks to 
sources of CO2. 

In conclusion, the relative low net release of methane from 
Nordic seagrass meadows presented in this study may reinforce 
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their capacity as natural blue carbon sinks. To fully understand 
the extent of emissions of methane and other GHGs from Nordic 
coastal habitats, multiple spatial (from microhabitat to seascape 
level) and temporal (diurnal and seasonal) aspects should be 
considered in future studies. 
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